
API Overview Guide

7.2.1 Release



Copyright © 2022 OneStream Software LLC. All rights reserved.

Any warranty with respect to the software or its functionality will be expressly given in the
Subscription License Agreement or Software License and Services Agreement between
OneStream and the warrantee. This document does not itself constitute a representation
or warranty with respect to the software or any related matter.

OneStream Software, OneStream, Extensible Dimensionality and the OneStream logo
are trademarks of OneStream Software LLC in the United States and other countries.
Microsoft, Microsoft Azure, Microsoft Office, Windows, Windows Server, Excel, .NET
Framework, Internet Information Services, Windows Communication Foundation and
SQL Server are registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries. DevExpress is a registered trademark of Developer
Express, Inc. Cisco is a registered trademark of Cisco Systems, Inc. Intel is a trademark
of Intel Corporation. AMD64 is a trademark of Advanced Micro Devices, Inc. Other names
may be trademarks of their respective owners.



Table of Contents
Introduction 1

Development Technologies 2

Programming Language 2

User Interface Technology 2

Server Technology 3

Database Technology 3

OneStream API Details and Database Documentation 3

Developer Fundamentals 4

VB.Net and C# 4

In-Solution Documentation 4

Business Rules Editor Overview 5

Helpful Resources 6

Platform Engines 8

Workflow Engine 8

Stage Engine 8

Finance Engine 9

Data Quality Engine 9

Data Management Engine 9

Presentation Engine 10

API Overview Guide i

Table of Contents



BRApi 10

Business Rules 11

Anatomy of a Business Rule 11

Business Rule Definition 11

Business Rule Classifications 13

Event Handler Business Rules 15

Complex Expressions 18

Business Rule Types 24

Organizing and Referencing Business Rules 33

API Structure and Organization 39

Namespaces 39

Namespaces Defined 40

Namespace Hierarchy 40

Microsoft Financial Calls 42

In-Solution Development 43

Custom Development 44

Using System Tools 45

System Business Rules 45

Database 46

Tables 46

API Overview Guide ii

Table of Contents



Tools 46

Data Records 46

Client API Listing 47

Client API Object Hierarchy 47

PowerShell 52

Event Listing 55

Event Handler Business Rules 55

Event Firing Sequences 59

Introduction 90

Member ID 91

Api.Pov.Time.MemberId 91

Api.Pov.Time.MemberId Usage 93

Api.Pov.Entity.MemberId 94

Api.Pov.Entity.MemberId Usage 95

Api.Pov.Account.MemberId 96

Api.Pov.Account.MemberId Usage 97

Dimension Primary Key - DimPk 98

DimPK Usage 98

Dimension Type Id 100

DimTypeID Usage 101

API Overview Guide iii

Table of Contents



Data Unit Dimension POV 102

Data Unit Dimension POV Usage 102

Time Functions 104

Api.Time.GetYearFromId 104

Api.Time.GetPeriodNumFromId 104

Api.Time.GetPeriodNumFromId Usage 104

Api.Time.GetNumDaysInTimePeriod 105

Api.Time.GetNumDaysInTimePeriod Usage 105

Api.Time.AddTimePeriods 106

Api.Time.AddTimePeriods Usage 106

Api.Time.AddYears 107

Api.Time.AddYears Usage 107

Using Member Functions for Calculations 109

GetMember 109

GetMember Usage 109

GetMemberId 110

GetMemberID Usage 110

GetBaseMembers 111

GetBaseMembers Usage 111

API Overview Guide iv

Table of Contents



Writing Stored Calculations 113

Overload Function 114

Api.Data.Calculate Usage 114

IsDurableCalculatedData 115

IsCurableCalculatedData Usage 115

Eval Function 115

Eval Function Usage 116

Summary 118

Remove Functions 119

RemoveZeros 119

RemoveNoData 119

Remove Functions Usage 121

GetDataBuffer Functions 122

GetDataBuffer Function 122

GetDataBuffer Usage 123

Unbalanced Math Functions 125

Unbalanced Math Functions 125

Unbalanced Math Functions Usage 126

GetDataBufferUsingFormula Function 126

FilterMembers 126

API Overview Guide v

Table of Contents



GetDataBufferUsingFormula Usage 127

API Overview Guide vi

Table of Contents



Introduction
The purpose of the API Guide is to provide detailed information about the technologies
and application programming interfaces available to consultants and developers
interested in extending the functionality of OneStream. 

This document contains information about the technologies used in the OneStream
product, naming conventions and organizational approaches used by the OneStream
engineering team.  It also includes detailed reference listings for API methods and events
exposed by OneStream.

API Overview Guide 1

Introduction



Development Technologies
Programming Language
The OneStream platform is based on the Microsoft .Net Framework.  OneStream’s
underlying codebase is predominately made up of C# libraries with a few VB.Net libraries
in use as well.  C# and Visual Basic .NET are the two primary programming languages
used to code against the .NET Framework. C# and VB.NET have very different syntax
elements, but Microsoft developed these languages simultaneously as part of a common
.NET Framework development platform. Both C# and VB.Net are developed, managed,
and supported by the same language development team at Microsoft.  They compile to
the same intermediate language (IL) which runs against the same .NET Framework
runtime libraries.  Although programming syntax is different for each language, almost
every command in VB has an equivalent command in C# and vice versa.  Both languages
reference the same underlying .NET Framework Base Classes to extend their
functionality.

User Interface Technology
The OneStream user interface is based on the Windows Presentation Foundation (WPF)
in order to provide a truly rich end user experience. WPF employs XAML, an XML based
language, to define and link various interface elements. WPF applications can be
deployed as standalone desktop programs, or hosted as an embedded object in a
website. Windows 10 Store application development provides another opportunity for
WPF based applications to be deployed, but as Windows only applications.

API Overview Guide 2

Development Technologies



Server Technology
All OneStream code is hosted and executed with Microsoft Internet Information Services
(IIS). This means that both the Web Server (service code) and Application Server
(service code) are executed within an IIS Application Pool process host.  The code is
running on the application server tier hosted within the application sever IIS application
pool.  This is a very important concept to keep in mind because there will be times when a
Business Rule must interact with different elements of the system.  The context in which
the Business Rule is running needs to be understood in order to establish communication
and/or interact with those other system elements.

Database Technology
OneStream was designed to run on all versions of the Microsoft SQL Server relational
database engine (Express, Standard, Data Center, Enterprise and Azure Database as a
Service).  For larger organizations, the SQL Server Enterprise edition is recommended
because OneStreammakes use of table partitioning.  This enables maximum throughput
during heavily multi-threaded operations such as data transformation and consolidation. 
The OneStream engineering team is committed to fully utilizing the capabilities of the
most recent versions of SQL Server and to keeping the OneStream platform optimized for
new versions of SQL Server as they become available.

OneStream API Details and Database Documentation
For more information on OneStream API functions and details on the OneStream
Framework and Application database tables and indexes, theOneStream API Details and
Database Documentation is available as part of the documentation. This can be found on
MarketPlace under Software Download. Create a folder on the PC on which this will be
loaded and copy the related zip file:

Right click and extract the zipped file’s contents here. Double-click the file which ends in
chm and this will launch the API Guide.

Contents are organized by the related Platform Engine (see Platform Engines). These are
broken down into Classes (e.g. DataApi), Overload Lists, Methods (e.g. GetDataCell),
Syntax and Parameters. The Index and Search tabs can be used to search by function
name, enumerations, properties, etc.

API Overview Guide 3

Development Technologies



Developer Fundamentals
VB.Net and C#
The OneStream platform is based entirely on the Microsoft .Net Framework as is the
Business Rules engine. Therefore, VB.Net and C# are the logical choice for Business
Rule syntax. At execution time, all Business Rules are compiled on demand and cached
for fast and reliable execution. Writing a Business Rule in VB.Net or C# provides the end
user with many advantages over older products based on VBScript. Business Rule
writers can expect exceptional code performance, better error messaging, and better
error handling because VB.Net and C# are a full featured programming language. In the
end, these capabilities result in a more reliable Business Rule code.

NOTE: There are two broad Business Rule Classifications: Shared
Business Rules and Item Specific Business Rules. Shared Business Rules
can be written in either VB.NET or C#, Item Specific Business Rules can be
written in VB.NET only.

In-Solution Documentation
The Business Rule Editor includes context sensitive help for API properties and methods
as well as Snippets (code examples). In-solution documentation makes the process of
writing a Business Rule more efficient because both API Documentation, Objects, and
Samples are presented within the Business Rule Editor window.  In addition, useful
coding examples accumulated by the OneStream engineering and consulting teams are
also presented in context sensitive manner within the Business Rule editor.  Companies
and partners can author their own Snippets and include them in their application as an
extension of the OneStream predefined Snippets (Snippet Editor MarketPlace Solution
required). 

API Overview Guide 4

Developer Fundamentals



Business Rules Editor Overview
The Business Rule editor is a powerful in-solution screen that provides integrated API
context help, syntax editing with intelli-sense, and full outlining capabilities.  The actual
syntax content and Business Rule structure will be discussed at length in subsequent
sections of this document.

The image below explains the major regions and elements of the Business Rule editor. 

API Overview Guide 5

Developer Fundamentals



Helpful Resources

VB.Net
VB.Net is one of the most popular programming languages in use today.  This language is
especially popular amongst business users because the syntax is perceived to be more
readable and business user friendly than other programming languages.  VB.Net still
shares many of the same syntax elements of older VB dialects such as VB6, VBA and
VBScript.  This means that users who have written Macros in Microsoft Excel or used
VBScript to write Business Rules in first generation CPM solutions should feel
comfortable with the core syntax elements of VB.Net.  The main learning challenge
business users face when migrating to VB.Net is understanding the object oriented nature
of the language.  In comparison to VBScript, VB.Net offers more elegant coding
opportunities. Many of the statements and processes are manually created in VBScript,
but in VB.Net they are encapsulated in object libraries on which users can simply call. 

Microsoft VB.Net Learning
Getting comfortable with VB.Net takes a little awareness of the basic libraries and objects
provided by the Microsoft .Net Framework.  The link below points to some resources that
business users may find helpful during the VB.Net learning process.

Microsoft Visual Basic
https://msdn.microsoft.com/en-us/library/2x7h1hfk.aspx

C#
C# (pronounced "See Sharp") is a modern, object-oriented, and type-safe programming
language. This language is especially popular amongst developers as it enabled them to
build many types of secure and robust applications that run in .NET. C# has its roots in the
C family of languages and will be immediately familiar to C, C++, Java, and JavaScript
programmers.

API Overview Guide 6

Developer Fundamentals

https://msdn.microsoft.com/en-us/library/2x7h1hfk.aspx


Microsoft C# Learning
The link below points to some resources that business users may find helpful during the
C# learning process.

https://docs.microsoft.com/en-us/dotnet/csharp/

API Overview Guide 7

Developer Fundamentals



Platform Engines
The platform is comprised of multiple processing engines.  These engines have distinct
responsibilities with respect to system processing and consequently they expose different
API interfaces to the Business Rules they call.  This section provides a brief overview of
each engine in the platform and describes the engine’s core responsibilities.

Workflow Engine
TheWorkflow Engine is thought of as the controlling engine or the puppeteer.  The main
responsibility of this engine is to control and track the status of the business processes
defined in the Workflow hierarchies.  This engine is primarily accessed through the BRApi
and can be called from other engines in order to check Workflow status during process
execution.  The Workflow Engine provides a very rich event model allowing each
Workflow process to be evaluated and reinforced with customer specific business logic if
required (see Appendix 2: Event Listing).

Stage Engine
The Stage Engine performs the task of sourcing and transforming external data into valid
analytic data points.  The main responsibility of this engine is to read source data (files or
systems) and parse the information into a tabular format.  This allows the data to be
transformed or mapped to valid Members defined by the Finance Engine.  The Stage
Engine is an in-memory, multi-threaded engine that provides the opportunity to interact
with source data as it is being parsed and transformed.  In addition to parsing and
transforming data, the Stage Engine also has a sophisticated calculation that enables
data to be derived and evaluated based on incoming source data.  The Stage Engine
provides quality services to source data by validating, mapping, and executing Derivative
Check Rules.

API Overview Guide 8

Platform Engines



Finance Engine
The Finance Engine is an in-memory financial analytic engine.  The main responsibility of
this engine is to enrich and aggregate base data cells into consolidated multi-Dimensional
information.  The Finance Engine provides the opportunity to define sophisticated
financial calculations through centralized Business Rules as well as member specific
Business Rules (Member Formulas). It works concurrently with the Stage Engine to
validate incoming intersections and works with the Data Quality Engine to execute
Confirmation Rules which are used to validate analytic data values.

Data Quality Engine
The Data Quality Engine is responsible for controlling data confirmation and certification
processes.  This Confirmation Engine is used to define and control the sequence of data
value checks required to assert the information submitted from a source system is
correct.  The Certification Engine is responsible for managing user certifications and
determining the Workflow dependents’ completion status.  This engine is primarily
accessed through the BRApi and may be called from other engines in order to check data
quality status during process execution.

Data Management Engine
The Data Management Engine provides task automation services to the platform.  This
engine executes batches of commands that are organized into sequences which contain
steps.  Steps represent entry points or mechanisms to execute features of other engines. 
For example, the Clear Data Step uses the services of the Finance Engine.  In addition,
the Data Management Engine has the ability to execute a Business Rule Step which
executes a custom Business Rule as part of a Data Management Sequence.  This is an
incredibly powerful capability because it provides the ability to string together any
combination of predefined processing steps with custom Business Rule steps.

API Overview Guide 9

Platform Engines



Presentation Engine
The Presentation Engine provides extensive data visualization services to platform.  The
Presentation Engine is made up of the following component engines: Cube View Engine,
Dashboard Engine, Parameter Engine, Book Engine and Extensible Document Engine. 
The Presentation Engine is responsible for managing and delivering content to the end
user as well as providing a development environment for custom user interface elements. 
This engine enables OneStreamMarketPlace application development capabilities and
continues to evolve with each product release.  Like the Data Management Engine, the
Presentation Engine interacts with and can call the services of all other engines in the
product.

BRApi
The BRApi is common across all Business Rules, engines and APIs being run, so it is not
an engine itself.  A BRApi function runs outside of the other engines and can orchestrate
certain functions from within other engines. In other words, a BRApi function be run from
one engine (e.g. Parser) to tell other engines (e.g. Finance) to execute their own APIs
(e.g. API.Data.GetDataCellUsingMemberScript). For another example, while the
API.Data.GetDataCell function is available from within the Finance engine, a similar
BRApi called GetDataCellUsingMemberScript can be run from any engine if given the
appropriate arguments.  A common use is BRApi.ErrorLog.LogMessage from any engine.

API Overview Guide 10

Platform Engines



Business Rules
Anatomy of a Business Rule
This section provides a detailed explanation of the following:

l Business Rule structure and fundamentals

l Business Rule Classifications

l Specific Business Rule Types

l Business Rule organization

l OneStream Business Rule framework

l Best practices for Business Rule architecture

Business Rule Definition
A Business Rule is a class, meaning each business rule is an independent object
encapsulating code written in either VB.Net or C#. A business rule can be a one-line call
to write a log message, or it can be a full code library containing other custom classes,
methods and properties. 

Each OneStream Business Rule has a predefined Namespace, a Public Class and a
Public Function that the OneStream platform engines invoke when the Business Rule
needs to be called.

NOTE: There are two broad Business Rule Classifications: Shared
Business Rules and Item Specific Business Rules. Shared Business Rules
can be written in either VB.NET or C#, Item Specific Business Rules can be
written in VB.NET only. All code examples presented in this guide will be
shown in VB.NET.

API Overview Guide 11

Business Rules



Predefined Object Names
l Namespace: OneStream.BusinessRule.<Business Rule Type>.<Unique Business
Rule Name>

l Class: MainClass;

l Function: Main

Example Business Rule Structure

Function Prototypes
Each Business Rule has one standard entry point Function Title called Main. The
Function definition below represents the standard prototype used by the Main Function in
each OneStream Business Rule. The Main Function always has the same standard
parameter layout, but the last two parameters, API and ARGS, contain different object
references based on the type of Business Rule being executed.

Public Function Main

(

API Overview Guide 12

Business Rules



ByVal si As SessionInfo, Connection Object Required to use API

ByVal globals As BRGlobals, Global Variable Object Used to Share Values

ByVal api As Object, Specific API object (Different for each Type)

ByVal args As ExtenderArgs Specific Arguments (Different for each Type)

)

As Object

Business Rule Classifications
OneStream provides classifications for business logic organization. At the core, all
business logic is delivered and executed as compiled VB.Net or C# code. This means no
matter what type of business logic is used, there is a consistency in the syntax and
compilation process. The reason for different classifications has to do with when and how
the business logic is invoked and how the business rule is scoped.

There are two broad business rule classifications: shared business rules and item specific
business rules. Each engine in the systemmay support one or both business rule
classifications. Whenever a processing sequence is executed in the platform, the
particular engine(s) involved evaluates how and what business logic is associated with
the process. This may include shared business rules (named and event handlers) as well
as item specific business rules (member formulas, logical expressions, and confirmation
rules).

NOTE: Shared business rules can be written in either VB.NET or C#, item
specific business rules can be written in VB.NET only.

Finance Engine Example
During a consolidation process, a Named Business Rule is associated with the Cube
being processed.  The Cube contains Member Formulas associated with some of its
Dimensions.  In this case, the Finance Engine compiles both the Named Business Rule
and each individual Member Formula in preparation for the calculation sequence.

API Overview Guide 13

Business Rules



Stage Engine Example
A similar example applies to the Stage Engine.  During a parse and transformWorkflow
process, a Named Business Rule is associated with the Data Source or Transformation
Rules.  In addition, individual Data Source Dimensions or Transformation Rules have
associated Logical Expressions that are also fired.  In this case, the Stage Engine
compiles both Named Business Rules and each individual Logical Expression in
preparation for execution during the parse and transform execution sequence.

Shared Business Rules
Shared Business Rules are reusable because the rule is written and stored centrally in
the Business Rule Library.  This means the same rule can be called or referenced by
multiple platform components.  For example, the Business Rule highlighted in the image
below is a general Extensibility Rule.  This rule can be executed from the Business Rule
Editor, called by a Data Management Job or called by another Business Rule.  Shared
Business Rules are the code files seen in the tree when the OneStream Syntax Editor is
open, they are organized by type, (see Business Rule Types in Chapter 4: Business
Rules) and named by the user who created the rule.

API Overview Guide 14

Business Rules



Event Handler Business Rules
Event Handler Business Rules are a predefined set of Shared Business Rules and are
always defined as an Extensibility Rule Type.  Event Handler Rules are invoked during a
processing sequence by their related platform engine in order to supplement the process. 
Determine/filter how/if the execution behaves for specific Workflows or the Cube POV. 
When an Event Handler Business Rule is called, the calling engine supplies information
about the executed process providing context about the process and information about
the specific sub-event executed.

Predefined Event Handler Business Rules
The list below details the specific predefined Event Handlers available in the platform. 
For details on the individual sub-events that fire for each Event Handler Business Rule,
see Event Listing.

l Data Management Event Handler

l Data Quality Event Handler

l Forms Event Handler

l Journal Event Handler

l Save Data Event Handler

l Transformation Event Handler

l Workflow Event Handler

l Wcf Event Handler

Item Specific Business Rules
Item Specific Business Rules are complete rules like Shared Business Rules, however
they are authored and stored with the specific platform item with which the rule is
associated.  There are different reasons for using Item Specific Business Rules vs Shared
Business Rules. 

API Overview Guide 15

Business Rules



For example, when creating a one-off rule without any reusable value to other
components in the system, write an Item Specific Business Rule directly on the platform
component because it requires a very specific piece of business logic.  Another example,
which is more common when creating calculation logic for an analytic model, is to write a
Member Formula that directly associates a calculation with a Dimension Member.  This
creates systemmaintenance clarity and maintainability. 

Item Specific Rules, in particular Member Formulas, can have a positive performance
impact because they allow calculations to be broken down into formula passes and
processed in a parallel (multi-threaded) fashion.  The same formulas can be written in a
Shared Finance Business Rule, but the calculations will always execute in the serial
manner defined in the rule.

Item Specific vs Shared Code Structure

As mentioned above, an Item Specific Business Rule and a Shared Business Rule are
identical in code structure. When writing an Item Specific Business Rule, the code editor
presents some hidden sections in the code window:

l Formula Header

l Formula Footer

l Helper Function Header

l Helper Function Footer

These hidden sections (i.e. Regions) keep the formula / expression as readable as
possible.  In a Shared Business Rule, these sections are visible which make the rule more
verbose.  The idea behind the Item Specific Business Rule is to create discrete code
blocks that are easy to manage and have limited interdependencies.  If one knows how to
write a Shared Business Rule, then she/he also knows how to write an Item Specific
Business Rule and vice versa.

Item Specific Rules are categorized into three types: Member Formulas, Complex
Expressions, and Confirmation Rues.  These relate to the platform engine with which they
are associated.

API Overview Guide 16

Business Rules



Member Formulas
AMember Formula is assigned to a Dimension Member and executes within the Finance
Engine during a Cube processing sequence (see the Formula Design Guide in the
OneStream Design and Reference Guide for more information on processing
sequences). Member Formulas provide the same level of syntax and logic capability that
exist when writing a Finance Shared Business Rule, however custom consolidation,
elimination, and translation logic cannot be written. Member Formulas are a great choice
for writing logic limited to calculations based on a single Member and calculations that do
not span Dimensions.  If Member Formulas are written with these constraints in mind,
then the Dimension Member and its formula can be reused in different Cubes without
having dependencies on other Dimensions.  This does not mean that a Member Formula
cannot look at other Dimensions.  Referencing Dimension Members outside of the
specific Dimension where the formula exists will limit the reusability of the Dimension, or
require all referenced Dimensions be used together in any new Cube.

Member Formulas are written directly on a Dimension Member within the Dimension
Library.  Navigate to the specific Member’s Formula property and click the ellipsis in order
to store a Member Formula.   The example below is a simple working capital Member
Formula.

API Overview Guide 17

Business Rules



Complex Expressions
A Complex Expression is a Business Rule assigned to Data Source Dimensions,
Derivative Rules, and Transformation Rules and execute within the Stage Engine during
a transformation processing sequence.  Complex Expressions provide the same level of
syntax and logic capability that exist when writing a Stage Shared Business Rule.  The
primary reason for using a Complex Expression rather than a Stage Shared Business
Rule is the logic being written has no reusability.  Complex Expressions isolate the logic
by associating it directly with a specific item.

API Overview Guide 18

Business Rules



Using Complex Expressions in a Data Source
Apply Complex Expressions to a Data Source Dimension by selecting the Dimension
requiring custom logic and setting the Logical Operator.  The Logical Operator property
opens the Logical Expression Editor dialog and allows the user to either select a Shared
Parser Business Rule or write a Complex Expression.  Both Shared Parser Business
Rules and Parser Complex Expressions result in the exact same compiled Business Rule
code.  The exception is a Complex Expression is only executed for the Dimension to
which it is applied and a Shared Parser Rule is shared and can be called by many
Dimensions.

API Overview Guide 19

Business Rules



Using Complex Expressions in a Derivative Rule
Apply Complex Expressions to a Derivative Rule by selecting the individual Derivative
Rule requiring custom logic and setting the Logical Operator.  Clicking the Edit Rule

Formulas toolbar button opens the Logical Expression Editor dialog and allows the
user to either select a Shared Derivative Business Rule, write a Complex Expression, or
use a Pre-Built Expression.  Both Shared Derivative Business Rules and Derivative
Complex Expressions result in the exact same compiled Business Rule code.  The
exception is a Complex Expression is only executed for the rule to which it is applied and
a Shared Derivative Rule is shared and can be called by many rules.

API Overview Guide 20

Business Rules



Using Complex Expressions in a Conditional Transformation
Rule
Apply Complex Expressions to a Transformation Rule by selecting the individual
Transformation Rule requiring conditional logic and setting the Logical Operator. Clicking

the Edit Rule Formulas toolbar button opens the Logical Expression Editor dialog and
allows the user to either select a Shared Conditional Business Rule or write a Complex
Expression.  Both Shared Conditional Business Rules and Conditional Complex
Expressions result in the exact same compiled Business Rule code.  The exception is a
Complex Expression is only executed for the rule to which it is applied and a Shared
Conditional Rule is shared and can be called by many rules. 

NOTE: Shared Conditional Business Rules and Complex Expressions
cannot be applied to One-To-One Transformation Rule Types. One-To-One
Transformation Rules are executed during the parsing process and
therefore are completely processed prior to the conditional mapping
process.

API Overview Guide 21

Business Rules



Confirmation Rules
Confirmation Rules are called by the Data Quality Engine and Finance Engine.  Apply
Complex Expressions to Confirmation Rules by selecting the individual Confirmation Rule

and clicking the Edit Rule Formulas toolbar button.  This button opens the Rule Editor
dialog and allows the user to write a Complex Expression containing the Confirmation
Rule logic.  A Confirmation Rule is only written on the specific rule to which it applies. 
Confirmation rules do not have an equivalent Shared Business Rule because each
Confirmation Rule requires specific logic.

API Overview Guide 22

Business Rules



TIP: Shared Finance Business Rules can be called from a Confirmation Rule. 
Create standard helper functions in a Shared Finance Business Rule and call
them from a specific Confirmation Rule creating some reusable logic and
improving the overall Confirmation Rule infrastructure maintenance (see
Business Rule Organization and Referencing in Business Rules).

API Overview Guide 23

Business Rules



Business Rule Types

Finance
Finance Business Rules are used to generate multi-Dimensional calculations.  These
Business Rules are written as Shared Business Rules and applied to a Cube or Member
Formulas.

Invoking Engine
Finance

API Object Type
FinanceAPI

Args Object Type
FinanceRulesApi

These contain multiple child objects that are populated based on how the rule type is
called.

l FinanceRulesApi.MemberListHeadersArgs

l FinanceRulesApi.MemberListArgs

l FinanceRulesApi.DataCellArgs

l FinanceRulesApi.FXRateArgs

l FinanceRulesApi.ConfirmationRuleArgs

l FinanceRulesApi.CalculateArgs

l FinanceRulesApi.DrillDownArgs

Common Usage

The list below details the common use cases that apply to Finance Business Rules:

API Overview Guide 24

Business Rules



l Stored Calculation of a Member Value

l Dynamic Calculation of a Member Value

l Programmatic Member Filters

l Scenario Copy Logic

l Allocation Logic

l Conditional No Input Rules

l Custom Consolidation Logic (Shared Business Rule only)

l Custom Translation Logic (Shared Business Rule only)

l Custom Elimination Logic (Shared Business Rule only)

l Confirmation Rule Logic

l Custom Calculations (Done via Dashboard Parameter Components)

Parser
Parser Business Rules are used to evaluate and/or modify field values being processed
by the Stage Parser Engine as it reads source data.  These Business Rules are written as
Shared Business Rules or Logical Expressions and applied to a Data Source Dimension.

Invoking Engine
Stage

API Object Type
ParserDimension

Args Object Type
ParserArgs

Common Usage

The list below details the common use cases that apply to Parser Business Rules.

API Overview Guide 25

Business Rules



l Custom Parsing Logic

l Field Value Concatenation

l Field Value Bypassing

l Evaluate Field other than Current Field being Parsed

Connector
Connector Business Rules are used to communicate with, collect data from, and drill back
to external systems.  These Business Rules are written as Shared Business Rules and
applied to a Data Source.

Invoking Engine
Stage

API Object Type
Transformer

Args Object Type
ConnectorArgs

Common Usage

The list below details the common use cases that apply to Connector Business Rules.

l Source System Connection Logic

l Source System Field List Logic

l Source System GetData Logic

l Source System DrillBack Logic

Conditional Rule
Conditional Rules (mapping) are used to conditionally evaluate mapping criteria during
the data transformation process.  These Business Rules are written as Shared Business
Rules or Logical Expressions and applied to a Transformation Rule definition.

API Overview Guide 26

Business Rules



Invoking Engine
Stage

API Object Type
Transformer

Args Object Type
ConditionalRuleArgs

Common Usage

The list below details the common use cases that apply to Conditional (mapping)
Business Rules.

l Evaluate Source Values and Conditional Map Target

l Evaluate Other Mapped Value and Conditional Map Target

DerivativeRule
Derivative Rules (derive data prior to mapping) are used to evaluate and/or calculate
values during the data derivation process.  These Business Rules are written as Shared
Business Rules or Logical Expressions and applied to a Derivative Rule definition.

Invoking Engine
Stage

API Object Type
Transformer

Args Object Type
DerivativeRuleArgs

Common Usage

The list below details the common use cases that apply to Derivative (derived data)
Business Rules.

API Overview Guide 27

Business Rules



l Calculate Mathematical Expressions

l Lookup Value from Transformation Cache for use in Calculations

l Lookup Value from Cube for use in Calculations

l Source System Check Rule Logic (validation rules on source data)

Cube View Extender
Cube View Extender Rules are used to apply advanced Cube View formatting to any
Cube View Report.  Using custom formatting allows the Cube View design to go beyond
the standard Cube View formatting properties and provides flexibility for specific
formatting needs.  The Extender Rule is used in conjunction with the Custom Report
Formatting properties on the Cube View under General Settings|Report Tab. 

Invoking Engine
Presentation

API Object Type
No specific API (used General BRApi)

Args Object Type

CubeView

CubeViewExtenderFunctionType

CubeViewExtenderReport

CustomSubVars

FunctionType

Common Usage

l Display different logos on select reports based on conditional logic or security and
manage their placement and size

API Overview Guide 28

Business Rules



l Customize the page number in the header or footer
Page numbers can be on the top or bottom row of a report and the horizontal
position can be specified for rows.  This only applies to the top or bottom rows.

l Format individual header and footer fields

l Customize the Cube View Header

o Control the Left, Right, Center Subtitle widths

o Control the font size of Title and Subtitles

l Customize the date display

l Customize bottom text alignment

l Apply Conditional Formatting
Format cells based on their contents.  Change the text color of a value in order to
effectively hide the result.

l Customized Report row and column formatting such as borders, background and
text colors and alignment

DashboardDataSet
DashboardDataSet Rules are used to create programmatic query results. This rule type
combines multiple types of data into a single result set using the full syntax capability of
VB.Net or C#. These Business Rules are written as Shared Business Rules and applied
to Dashboard Data Adapters or Dashboard Parameters.

Invoking Engine
Presentation

API Object Type

No specific API (used General BRApi)

Args Object Type
DashboardDataSetArgs

API Overview Guide 29

Business Rules



Common Usage

The list below details the common use cases that apply to DashboardDataSet Business
Rules.

l Combine Different Types of Data for a Report

l Build Programmatic Data Queries (e.g., analytic plus SQL)

l Conditionally Build Data Query Reports

l Conditionally Build Data Query Parameters

DashboardExtender
DashboardExtender Rules are used to perform a variety of tasks associated with custom
Dashboards and MarketPlace Solutions. These Business Rules can be thought of as
multi-purpose rules and make up the majority of the code written in a MarketPlace
Solution. In addition, they are written as Shared Business Rules and applied to
Application Dashboard Parameter Components (Buttons, Combo Boxes, etc.).

Invoking Engine
Presentation

API Object Type
No Specific API (uses General BRApi)

Args Object Type
DashboardExtenderArgs

Common Usage

The list below details the common use cases that apply to DashboardExtender Business
Rules.

l Execute a Task when the User Clicks a Button

l Perform a Task and Show a Message to the User

API Overview Guide 30

Business Rules



l Perform a Custom Calculation

l Upload a File from the End User’s Machine

l Automate a Workflow

l Build a CustomWorkflow

l Create Custom Data Tables

l These rules are basically limited to the imagination of the developer

DashboardStringFunction
DashboardStringFunction (reference as XFBR) Rules are used to process conditional
Dashboard Parameters. These rules inspect and alter a Dashboard Parameter value
using the full syntax capabilities of VB.Net or C#. DashboardStringFunctions are written
as Shared Business Rules and called by using a XFBR(BusinessRuleName,
FunctionName, UserParam=[UserValue]) specification anywhere a standard Dashboard
Parameter is used.

Invoking Engine
Presentation

API Object Type
No Specific API (uses General BRApi)

Args Object TypeDashboardStringFunctionArgs

Common Usage

The list below details the common use cases that apply to DashboardStringFunction (i.e.,
conditional Parameters) Business Rules.

l Evaluate a Dashboard Parameter and conditionally return another Value

l Evaluate a Cube View Parameter and conditionally return another Value

API Overview Guide 31

Business Rules



l This Business Rule can be substituted anywhere a Dashboard Parameter is used in
order to evaluate the Supplied Parameter value and return a different value

Extender
Extender Rules are the most generalized type of Business Rule in the platform.  Use
these to write a simple utility function or a specific helper function called as part of a Data
Management Job. These Business Rules are written as Shared Business Rules and
executed directly from the code editor, a data management job or the Finance Engine
during an external Dimension request (i.e., read Dimension Members from an external
list).

Invoking EngineBusiness Rule, Data Management, Finance

API Object TypeNo Specific API (uses General BRApi)

Args Object Type

ExtenderArgs

This contains multiple child objects that are populated based on how the rule type is
called.

l ExtenderArgs.DataMgmtArgs

l ExtenderArgs.ExternalDimSourceArgs

Common Usage

The list below details the common use cases that apply to Extender Business Rules.

l Create a General Helper Rule for Administrators Only

l Create Data Management Business Rule Step Logic

l Create a Query to fill an External Dimension List

API Overview Guide 32

Business Rules



Organizing and Referencing Business Rules
The Business Rule framework provided organizes business rules to maximize their reuse.
You can link business rules and reference one business rule from another. You can also
link and call external DLLs from a business rule. This section describes how to reference
a shared business rule and an external DLL from another business rule.

Defining a Reference to a Shared Business Rule
When you create a shared business rule is created, its public members can be referenced
and run by other shared and item specific business rules. Creating a shared or referenced
business rule lets you:

l Create a list of shared constant values.

l Create a set of standard helper functions.

l Centralize the maintenance of shared logic.

Reference Syntax
This section defines the syntax required to reference a shared business rule from another
shared or item specific business rule.

Shared business rules referencing other shared business rules
To create a reference from one shared business rule to another, go to the rule calling a
Public Method of another shared business rule and make a declaration in the Referenced
Assemblies property. The syntax requires a BR\ prefix and the business rule name to
reference. A rule may reference either a VB.NET or C# rule.

TIP: Reference multiple business rules by creating a comma-separated list of
reference statements.

API Overview Guide 33

Business Rules



Syntax

BR\<business rule name to reference>

Example (Single Reference)

BR\OPS_PostalServiceHelper

Example (Multiple References)

BR\OPS_PostalServiceHelper; BR\CPP_SolutionHelper

Referencing a Shared Business Rule From an Item Specific
Business Rule
Finance, Parser, ConditionalRule and DeriviativeRule shared business rules have
equivalent item specific business rules. When you create a shared business rule, set the
Contains Global Functions For Formulas property to True to make the rule available to
I\item specific business rules. Item specific business rules do not have a Referenced
Assemblies property so can only reference shared rules of the same engine type with the
Contains Global Functions For Formulas property set to True.

In the example below, the SharedForecastSeeding rule can be called from any other
Finance rule because its Contains Global Functions For Formulas property is True.

API Overview Guide 34

Business Rules



NOTE: If a Finance business rule has Contains Global Functions For
Formulas set to True, changes to the business rule have a metadata status
impact and change the Calculation Status toOK, MC.  This dependency
must occur because a global rule can be used by a member formula
calculation which can impact the status of the Finance Engine’s data
(analytic / Cube data).

Using a Code Declaration
Once a reference is made to a shared business rule, its Public Methods (Functions /
Subs) can be called. To access the Public Methods, declare an instance of the rule in the
code using the Business Rule’s fully qualified Namespace. This creates an object variable
that references the shared business rule calls its Public Methods.

Example Declaration

‘Declaring an object variable to reference a shared business rule.

Dim opsHelper As New
OneStream.BusinessRule.DashboardExtender.OPS_
PostalServiceHelper.MainClass

Example Usage

‘Executing a function on the Reference business rule object variable

API Overview Guide 35

Business Rules



Dim desc As String opsHelper.GetFieldFromID(si, "Dashboard",
"Name", dashName, "Description")

Referencing an External .Net DLL
Developers can build and reference customMicrosoft .Net DLLs from shared business
rules. These are written in either VB.Net or C#.  Custom, encapsulated business logic can
be protected within an external DLL written in Microsoft Visual Studio.

Create a DLL referenced by a business rule to:

l Protect domain specific intellectual property (hide value programming logic).

l Separate code with dependencies on other programs (system integration
wrappers).

l Complex logic requiring development tools only available within Microsoft Visual
Studio (Web Service Discovery and Interface Development).

Installing and Configuring DLLs
Perform these tasks to enable an external DLL to be referenced from a shared business
rule.

1. Specify the BusinessRuleAssemblyFolder located in the Application Server
configuration file. This folder should be shared by all application servers. The folder
must be accessible via the Account Credentials used to configure the IIS
Application Pool on the application server.

This setup is a best practice, but not required. Alternatively, you can reference the
external DLL from a folder on each application server. When the DLL is updated,
copy it to a standard folder on each application server.

2. Identify or create the external DLL to be called and copy it to
BusinessRuleAssemblyFolder. When a business rule runs and an external DLL
reference with the XF\ prefix is found in the Referenced Assemblies property of the
rule, the application server looks in the BusinessRuleAssemblyFolder specified in
the application server configuration file to find the DLL to reference.

API Overview Guide 36

Business Rules



3. Add a reference specification to the DLL in the Referenced Assemblies property of
the business rules using it.

Reference Specification
This section defines the syntax required to reference an external DLL using the shared
business rule's Referenced Assemblies property. There are three methods to reference
an external DLL.

Method 1
This method uses the XF\ prefix to create a reference to an external DLL located in the
BusinessRuleAssemblyFolder folder which is specified in the application server
configuration file.

Syntax
XF\<External DLL Name to Reference>

Example (Single Reference)
XF\ExternalCode.DLL

Example (Multiple References)
XF\ExternalCode1.DLL;XF\ExternalCode2.DLL

Method 2
This method uses the file system path C:\DLLFolderName\ to create a reference to an
external DLL on each application server. 

NOTE: The same folder path and DLL must exist on all application servers.
This method is not a best practice for custom business logic DLLs because it
increases maintenance. 

You can use a file system path to reference an external DLL that already exists on an
application server, as part of the operating system or as an installed component.

Syntax
C:\DLLFolderName\<External DLL Name to Reference>

Example (Single Reference)
C:\DLLFolderName\ExternalCode.DLL

Example (Multiple References)
C:\DLLFolderName\ExternalCode1.DLL; C:\DLLFolder\ExternalCode2.DLL

API Overview Guide 37

Business Rules



Code Declaration
Once a reference is made to an External DLL from a shared business rule, the Public
Methods (Functions / Subs) of that external DLL can be called. To access the shared
business rule’s Public Methods, declare an Import to the Namespaces defined by the
DLL, then create an instance of the desired class to use in the code.

Example Import

Imports YourNamespace.SubNamespace

Example Declaration

‘Declaring an object variable to reference a class on the external DLL

Dim extHelper As New YourClass

Example Usage

‘Executing a Function on the external DLL

Dim desc As String extHelper.YourFunciton(“SomeParameter”)

Method 3
This method uses a Windows environment variable to create a reference to an external
DLL.  All standard Windows paths are supported and the name is determined by .NET.

Syntax
%System%\DLLName.DLL

Example
%userprofile%\documents\WindowsBase.DLL

API Overview Guide 38

Business Rules



API Structure and Organization
Namespaces
The Microsoft .Net Framework organizes code libraries into subject areas called
Namespaces.  The process begins with identifying the Namespaces (libraries) required
for the procedure being created. Namespaces provide distinction to the objects and
methods that exist in a code library. As a best practice, Namespaces typically start with
the name of the company that created the code library.This prevents naming conflicts for
objects that share a common name, but were created by different software providers.

In an effort to keep coding syntax as terse as possible, the .Net Framework allows the
user to specify common Namespaces to use at the top of a Business Rule. These lines
are preceded by the key word Imports. Adding Imports Statements prevents having to
type an object’s fully qualified name within a Namespace.

All Business Rules are prepopulated with both the commonly used Microsoft
Namespaces as well as the OneStream specific Namespaces. For example, adding the
statement Imports System.Math to a Business Rule enables access to objects in the
System.Math Namespace.  Instead of typing System.Math.Round(100.05,0), type Round
(100.05,0).

The example below shows the Namespace references used in a standard Extensibility
Rule.

API Overview Guide 39

API Structure and Organization



Namespaces Defined
OneStream is a large and sophisticated software platform and consequently a great deal
of effort went into organizing the code base into a hierarchical set of Namespaces. This
section defines the Namespace hierarchy and explains the primary purpose of the code
libraries in each Namespace. It is important to understand structure and meaning of the
platform Namespaces because most API methods accept and return objects defined
within specific Namespaces. By understanding the structure of the Namespace hierarchy,
developers can browse for objects using intelli-sense in the syntax editor. 

Namespace Hierarchy
The hierarchy below denotes the platform Namespaces and the object libraries contained
within them. This hierarchy is explored from within the Business Rule syntax editor by
typingOneStream. and navigating through the intelli-sense popup lists. This technique
helps find objects to pass into an API function, objects returned from an API function, or
common helper classes available in the platform.

OneStream (Root Namespace)

OneStream.BusinessRule

OneStream.BusinessRule.Finance

OneStream.BusinessRule.Parser

OneStream.BusinessRule.Connector

OneStream.BusinessRule.ConditionalRule

OneStream.BusinessRule.DerivativeRule

OneStream.BusinessRule.DashboardDataSet

OneStream.BusinessRule.DashboardExtender

OneStream.BusinessRule.DashboardStringFunction

OneStream.BusinessRule.Extender

OneStream.Client

OneStream.Client.SharedUI

OneStream.Client.SharedUI.FinanceMsgStrings

OneStream.Client.SharedUI.FinanceUIStrings

OneStream.Client.SharedUI.GeneralMsgStrings

OneStream.Client.SharedUI.GeneralUIStrings

OneStream.Client.SharedUI.StageMsgStrings

OneStream.Client.SharedUI.StageUIStrings

OneStream.Client.SharedUI.StringResourceFileType

API Overview Guide 40

API Structure and Organization



OneStream.Client.SharedUI.StringResourceHelper

OneStream.Client.SharedUI.XFStrings

OneStream.Finance

OneStream.Finance.Engine

OneStream.Finance.Engine.DataApi

OneStream.Finance.Engine.EvalDataBufferDelegate

OneStream.Finance.Engine.FinanceRulesApi

OneStream.Finance.Engine.IAccountApi

OneStream.Finance.Engine.ICalcStatusApi

OneStream.Finance.Engine.IConsApi

OneStream.Finance.Engine.ICubesApi

OneStream.Finance.Engine.IDimensionsApi

OneStream.Finance.Engine.IEntityApi

OneStream.Finance.Engine.IFlowApi

OneStream.Finance.Engine.IFunctionsApi

OneStream.Finance.Engine.IFxRatesApi

OneStream.Finance.Engine.IMembersApi

OneStream.Finance.Engine.IPovApi

OneStream.Finance.Engine.IScenarioApi

OneStream.Finance.Engine.ITimeApi

OneStream.Finance.Engine.IUDApi

OneStream.Finance.Engine.IViewApi

OneStream.Finance.Engine.IWorkflowApi

OneStream.Stage

OneStream.Stage.Engine

OneStream.Stage.Engine.Parser

OneStream.Stage.Engine.ParserDimension

OneStream.Stage.Engine.TransformerDataCache

OneStream.Stage.Engine.Transformer

OneStream.Stage.Engine.TransformerDimension

OneStream.Stage.Engine.TransformRuleCache

OneStream.Shared

OneStream.Shared.Engine

OneStream.Shared.Engine.ExternalWcfClient

OneStream.Shared.Engine.TaskActivityStepWrapperItem

OneStream.Shared.Database

OneStream.Shared.Database.DbConnInfo

API Overview Guide 41

API Structure and Organization



OneStream.Shared.Common

OneStream.Shared.Common.(Various Constants, Helper Classes & Data Transfer Objects ‘DTO’ )

OneStream.Shared.Wcf

OneStream.Shared.Wcf.(Various Constants & Data Transfer Objects ‘DTO’)

Microsoft Financial Calls
Financial calls are part of the Microsoft.VisualBasic namespace, and can be used to for
calculations such as:

l Depreciation

l Present and future values

l Interest rates

l Rates of return

l Payments

These functions are available to anyone with access to Business Rules. They can be
explored within the Business Rule syntax editor by typing Microsoft.VisualBasic.Financial
then navigating through the intelli-sense popup lists.

To view all methods from the Microsoft.Visual Basic Financial class used in a Business
Rule:

1. Navigate to the Business Rule Editor:

a. In the OneStream Software application, click the Application tab.

b. Under Tools, click Business Rules.

c. Expand the appropriate Business Rules category or click Search on the
toolbar.

2. Click the Formula tab.

3. In the editor window, typeMicrosoft.Visualbasic.Financial.

A list of methods displays.

API Overview Guide 42

API Structure and Organization



See Business Rules for more information.

In-Solution Development
In-solution development is the process of creating OneStream Business Rules to deliver
domain specific solutions.  This means that all Business Rules are executed within the
application server process space.  The code written is only executed on the application
servers where OneStream is deployed. 

Developing within the application server environment enables solution developers to
focus on the business problem instead of common programming concerns.  The platform
takes care of managing connections, moving data between application tiers, and load
balancing server activities.

API Overview Guide 43

API Structure and Organization



In some cases, in-solution development is seen as a limitation because the developer is
restricted to coding within the application server tier.  However, in most cases the
efficiency and quality gained by developing within the platform out ways any limitations
imposed by coding at the application server tier.

Custom Development
Custom development refers to stand alone application development that interacts with the
platform at the web server tier.  OneStream provides a client tier API called from a custom
developed client application.  The client API is regularly used within the PowerShell script
to perform automation tasks. 

Client API
The OneStream Client API is intended to provide a set of methods that connect to the
OneStream environment, request data via a Cube View, and execute a Data
Management Sequence.  At first glance, these three capabilities may seem limiting, but it
is important to realize that a Data Management Sequence can contain any combination of
Data Management Steps and these steps can consist of custom Business Rules.  Client
side developers can create Data Management Sequences that execute Business Rules
to accomplish server side tasks.  Developers can create sophisticated solutions that
combine in-solution Business Rule logic with client side custom solution logic.

Custom Web Development
The platform has the ability to display web pages within a custom Dashboard.  This allows
completely custom web applications to surface within the OneStream solution. 
OneStream can pass information about the user’s POV andWorkflow as URL
Parameters enabling the custom web application to act as part of an integrated solution.

With this capability, developers are free to create and incorporate any solution they can
imagine.

API Overview Guide 44

API Structure and Organization



Using System Tools
System Business Rules
System Extender Business Rules are used in coordination with Azure Server Sets for
elastic scalability at the Azure Database and Server Sets level. Server and eDTU scaling
can be accomplished manually or via System Business Rules.  If System Business Rules
is selected as a Scaling Type, then OneStream will call a user-defined System Extender
Business Rule to determine if scaling is needed.  The user is responsible for
implementing the scaling function and returning the proper scaling object to OneStream.
This can be accomplished by adding a System Extender Business Rule and assigning it
appropriately.

Under each Case statement, these rules and related Args and BRApis can be used to
check the current Server Set capacity, query metrics about a Server Set or Azure
Database and impact the volume of Server Sets or level of Azure Database deployed.

Refer to the Installation and Configuration Guide under Azure Database Connection
Settings and Server Sets for where to refer to these Business Rules. Example starting
point of empty System Extender Business Rule upon creation:

API Overview Guide 45

Using System Tools



Sample System Business Rule
Metrics data is passed to this function to help the user determine whether the server or
database needs to be scaled or not.  Depending on what is being scaled, different metric
data is passed in.  For server scaling, Environment metrics and Scale Set metrics are
passed in to help determine scaling.  For database scaling, Environment metrics and SQL
Server Elastic Pool metrics are passed in to help determine scaling.

Database
The Database screen allows System Administrators to view all of OneStream’s database
tables and provides tools for managing stored data and other information.

Tables
This gives read-only access to all data tables in the database and can be used for tasks
such as trying to debug issues without having access to the database, or deletion logging.

Tools
Database Tools allow System Administrators to manage the database.

Data Records
Enter a Member Filter in order to view data for the entire system.

API Overview Guide 46

Using System Tools



Client API Listing
This API provides a simple set of functions that have the ability to connect to OneStream’s
server, authenticate, execute OneStream Data Management Sequences, and perform
basic data retrieval.

Client API Object Hierarchy
l OneStreamClientAPI

o LogonInfo

o Type:  LogonInfo

o SI

o Type:  SessionInfo

o Authentication

o Logon

o Parameters:

o string webServerUrl

o string userName

o string password

o XFClientAuthenticationType clientAuthenticationType

o Return Value:

API Overview Guide 47

Client API Listing



o LogonInfo

o Logoff

o Parameters:

o None

o Return Value:

o None

o OpenApplication

o Parameters:

o string application

o Return Value:

o LogonInfo

o LogonAndOpenApplication

o Parameters:

o string webServerUrl

o string username

o string password

o string application

API Overview Guide 48

Client API Listing



o XFClientAuthenticationType clientAuthenticationType

o Return Value:

o LogonInfo

o EncryptPassword

o Parameters:

o string clearTextPassword

o XFClientAuthenticationType clientAuthenticationType

o Return Value:

o string

l DataManagement

o ExecuteSequence

o Parameters:

o string sequenceName

o string customSubstVarsAsCommaSeparatedPairs

o Return Value:

o DataMgmtResult

o ExecuteStep

API Overview Guide 49

Client API Listing



o Parameters:

o string dataMgmtGroupName

o string stepName

o string customSubstVarsAsCommaSeparatedPairs

o Return Value:

o DataMgmtResult

l DataProvider

o GetAdoDataSetForCubeViewCommand

o Parameters:

o string cubeViewName

o bool dataTablePerCubeViewRow

o CubeViewDataTableOptions dataTableOptions

o string resultDataTableName

o Dictionary<string, string> customSubstVars

o bool throwExceptionOnError

o Return Value:

o DataSet

o GetAdoDataSetForSqlCommand

API Overview Guide 50

Client API Listing



o Parameters:

o DbLocation dbLocation

o string xfExternalDBConnectionName

o string sqlQuery

o string resultDataTableName

o Dictionary<string, string> customSubstVars

o bool throwExceptionOnError

o Return Value:

o DataSet

o GetAdoDataSetForMethodCommand

o Parameters:

o XFCommandMethodTypeId xfCommandMethodType

o string methodQuery

o string resultDataTableName

o Dictionary<string, string> customSubstVars

o bool throwExceptionOnError

o Return Value:

o DataSet

API Overview Guide 51

Client API Listing



PowerShell
PowerShell is an object-oriented programming language and interactive command line
shell for Microsoft Windows.  It was designed to automate system tasks, such as batch
processing, and create systems management tools for commonly implemented
processes.  PowerShell includes more than 130 standard command line tools for
functions that formerly required users to create scripts in VB, VBScript or C#.

PowerShell offers a variety of ways to automate tasks which include:

Cmdlets
Very small .NET classes that appear as system commands

Scripts
Combinations of cmdlets and associated logic

Executables
Standalone tools

Instantiation of standard .NET classes

PowerShell integrates with the .NET environment and can also be embedded in other
applications. Over one hundred cmdlets are included and can be used separately or
combined with others to automate more complex tasks. Users can also create and share
cmdlets.

PowerShell is built into Windows Operating Systems, where it is included as an optionally
installed feature. In addition, the Windows Task Scheduler can be used to automate
PowerShell script execution. 

Using PowerShell Script Editor
To run PowerShell on Windows, Click left lower corner Windows icon start typing
PowerShell and open to begin.

There are two programs used to interact with PowerShell. 

Windows PowerShell ISE
This is the integrated scripting environment or Script Editor.  The editor allows users to
type PowerShell commands as well as edit and run PowerShell script files which are text
files with a ps1 extension. 

API Overview Guide 52

Client API Listing



Windows PowerShell
This program is a command line execution tool that looks like a DOS prompt.  It allows a
user to run a command or a script file, but it does not perform editing/creating scripts as
well. 

Configuring PowerShell to use the OneStream Client API
Before PowerShell can be used to interact with the OneStream client API, three
configuration steps must be completed on each machine used for PowerShell script
execution.  First, execute a PowerShell command enabling the execution of unsigned
scripts.  Second, create or alter the PowerShell execution and IDE configuration files, so
the script engine understands how to use the .Net Framework v4.0Finally, OneStream
Client API must be installed on each machine executing PowerShell scripts.

Allowing Execution of Unsigned Scripts
The first time this runs, the following line needs to run in a PowerShell command prompt. 
This will allow PowerShell to run unsigned scripts created on the local computer.

set-executionpolicy remotesigned

Configuration for .Net Framework v.4.0
In order to use theOneStreamClientApi with PowerShell, PowerShell needs to be
configured to use the .NET Framework v4.0.  In order to do this, modify or create two
configuration files if they do not already exist.

Configuration File Folder
C:\Windows\System32\WindowsPowerShell\v1.0

File 1 (Config for Execution)
powershell.exe.config

File 2 (Config for IDE)
powershell_ise.exe.config

Required File Contents (Must be added to each configuration file)

API Overview Guide 53

Client API Listing



<?xml version="1.0"?>
<configuration>
<startup useLegacyV2RuntimeActivationPolicy="true">
<supportedRuntime version="v4.0.30319"/>
<supportedRuntime version="v2.0.50727"/>

</startup>
</configuration>

Refer to the following web resources for more information on this process.

http://stackoverflow.com/questions/2094694/how-can-i-run-powershell-with-the-net-4-
runtime http://tfl09.blogspot.com/2010/08/using-newer-versions-of-net-with.html.

Install OneStream Client API
The Client API Installation is used by PowerShell scripts to interact with the OneStream
server.

Learning PowerShell
Microsoft provides extensive resources to help IT professionals get the most out of
PowerShell.

Refer to the following web resource in order to learn more about scripting with
PowerShell.  http://technet.microsoft.com/en-us/scriptcenter/powershell.aspx

Using OneStream’s Client API in a PowerShell Script
OneStream provides a client API (OneStreamClientApi ) specifically designed to enable
PowerShell scripts to call a OneStream function.  This API exposes functions for
authentication and Data Management.  Over time, OneStream expanded the number of
functions exposed to this API.  The Client API component is installed as part of the
OneStreamClientAPi.msi. 

API Overview Guide 54

Client API Listing

http://stackoverflow.com/questions/2094694/how-can-i-run-powershell-with-the-net-4-runtime
http://stackoverflow.com/questions/2094694/how-can-i-run-powershell-with-the-net-4-runtime
http://tfl09.blogspot.com/2010/08/using-newer-versions-of-net-with.html
http://technet.microsoft.com/en-us/scriptcenter/powershell.aspx


Event Listing
Event Handler Business Rules
WCF Event Handler
This allows direct interaction with the Microsoft Windows Communication Foundation
which means it listens to communication between the client and the web server. The rule
will intercept the communication, analyze it, and if certain criteria is met, it will run its logic. 
This is quite flexible and has a variety of uses such as creating, reading, deleting, and
updating different types of objects in the system for users in a group or Transformation
Rule changes. For example, a rule can be created to e-mail an auditor about every
metadata change as it happens.

Transformation Event Handler
This can be run at various points from Import through Load. Available operations:

StartParseAndTransForm

InitializeTransFormer

ParseSourceData

LoadDataCacheFromDB

ProcessDerivativeRules

ProcessTransformationRules

DeleteData

DeleteRuleHistory

WriteTransFormedData

SummarizeTransFormedData

CreateRuleHistory

EndParseAndTransForm

FinalizeParseAndTransForm

API Overview Guide 55

Event Listing



StartRetransForm

EndRetransForm

FinalizeRetransForm

StartClearData

EndClearData

FinalizeClearData

StartValidateTransForm

ValidateDimension

EndValidateTransForm

FinalizeValidateTransForm

StartValidateIntersect

EndValidateIntersect

FinalizeValidateIntersect

LoadIntersect

StartLoadIntersect

EndLoadIntersect

FinalizeLoadIntersect

Journals Event Handler
This can be run before, during, or after a Journal operation such as Submission,
Approval, or Post. Available operations:

SubmitJournal

ApproveJournal

RejectJournal

PostJournal

API Overview Guide 56

Event Listing



UnpostJournal

StartUpdateJournalWorkflow

EndUpdateJournalWorkflow

FinalizeUpdateJournalWorkflow

Save Data Event Handler
This is run in order to track all save events in an application.

Forms Event Handler
This can be run before, during, or after an operation such as Form Save. Available
operations:

SaveForm

CompleteForm

RevertForm

StartUpdateFormWorkflow

EndUpdateFormWorkflow

FinalizeUpdateFormWorkflow

Data Quality Event Handler
This can be run before, during, or after data quality events like Confirmation and
Certification. Available operations:

StartProcessCube

Calculate

Translate

Consolidate

EndProcessCube

FinalizeProcessCube

PrepareICMatch

StartICMatch

API Overview Guide 57

Event Listing



PrepareICMatchData

EndICMatch

StartConfirm

EndConfirm

FinalizeConfirm

SaveQuestionResponse

StartSetQuestionairreState

SaveQuestionairreState

EndSetQuestionairreState

StartSetCertifyState

SaveCertifyState

EndSetCertifyState

FinalizeSetCertifyState

Data Management Event Handler
This can be run before or after a Data Management Sequence or Step runs. Available
operations:

StartSequence

ExecuteStep

EndSequence

Workflow Event Handler
This can be run before or after a Workflow execution step. Available operations:

UpdateWorkflowStatus
WorkflowLock
WorkflowUnlock

API Overview Guide 58

Event Listing



Event Firing Sequences
OneStream fires a series of events when completing tasks via Event Handler Business
Rules.  The example below explains how to read the table which provides the firing
sequence when running a specific task.

Clear Cube Data

API Overview Guide 59

Event Listing



API Overview Guide 60

Event Listing



Clear Stage Data

API Overview Guide 61

Event Listing



API Overview Guide 62

Event Listing



Execute Data Management

Import Data Connection

API Overview Guide 63

Event Listing



API Overview Guide 64

Event Listing



Import Excel File

API Overview Guide 65

Event Listing



API Overview Guide 66

Event Listing



API Overview Guide 67

Event Listing



API Overview Guide 68

Event Listing



API Overview Guide 69

Event Listing



API Overview Guide 70

Event Listing



Import Text File

API Overview Guide 71

Event Listing



API Overview Guide 72

Event Listing



API Overview Guide 73

Event Listing



Process Form

API Overview Guide 74

Event Listing



API Overview Guide 75

Event Listing



Process Journal

API Overview Guide 76

Event Listing



API Overview Guide 77

Event Listing



Process Workflow

API Overview Guide 78

Event Listing



API Overview Guide 79

Event Listing



API Overview Guide 80

Event Listing



API Overview Guide 81

Event Listing



API Overview Guide 82

Event Listing



API Overview Guide 83

Event Listing



API Overview Guide 84

Event Listing



API Overview Guide 85

Event Listing



API Overview Guide 86

Event Listing



API Overview Guide 87

Event Listing



API Overview Guide 88

Event Listing



API Overview Guide 89

Event Listing



Introduction
The purpose of the OneStream Finance Functions API Guide is to provide detailed
information about the technologies and application programming interfaces (APIs)
available to consultants and developers interested in extending the functionality of
OneStream.

This document contains information about the technologies used in the OneStream
Software product, naming conventions and organizational approaches used by the
engineering team. It also includes detailed reference listings for API methods and events
exposed by OneStream.

API Overview Guide 90

Introduction



Member ID
There are many functions that use MemberID as an integer to pass in as a property.
These functions get the current POV of the specific Dimension member to perform a
variety of tasks, such as:

l Get Current Year based on Time POV

o Example: Api.Time.GetYearFromId(api.Pov.Time.MemberId)

l Get Text field value from Entity POV

o Example: Api.Entity.Text(api.Pov.Entity.MemberId, 1)

l Get Account Type based on current Account POV

o Example: Api.Account.GetAccountType(api.Pov.Account.MemberId)

When working with formulas and calculations, it is better to work with MemberId versus
Member Name.

Api.Pov.Time.MemberId
Api.Pov.Time.MemberId is obtained from the Time Member Id for the current POV being
executed during the calculation. The Time.MemberId is stored as an unique integer to
represent a single Time member. The uniqueness is determined by the combination of
the Year and Period.

API Overview Guide 91

Member ID



H1 = 001                    

Q1 = 002

M1 = 003            

M2 = 004

M3 = 005

Q2 = 006

M4 = 007

M5 = 008

M6 = 009

H2 = 010

Q3 = 011

API Overview Guide 92

Member ID



M7 = 012

M8 = 013

M9 = 014

Q4 = 015

M10 = 016

M11 = 017

M12 = 018

The Time MemberId is constructed like this:  2019003000

The api.Pov.Time.MemberId is used as a property in many functions. Here are some of
the most common functions:

l api.Time.GetYearFromId

l api.Time.GetPeriodNumFromId

l api.Time.GetNumDaysInTimePeriod

l api.Time.AddTimePeriods

l api.Time.AddYears

Api.Pov.Time.MemberId Usage
Example using api.Pov.Time.MemberId:

ErrorLog result:

Example using api.Pov.Time.MemberId in a working formula:

API Overview Guide 93

Member ID



Api.Pov.Entity.MemberId
Api.Pov.Entity.MemberId is obtained from the Entity Member Id for the current Entity POV
being executed during the calculation. The Entity.MemberId is stored as a unique integer
to represent a single Entity member. The Entity Member Id is also found using the Grid
View in the Entity Dimension Library.

Api.Pov.Entity.MemberId is used as a property in many functions.  Here are some of the
most common functions:

l Get Local Currency Id for current Entity POV.

o Example: api.Entity.GetLocalCurrencyId(api.Pov.Entity.MemberId)

l Get Local Currency Cons Member Name for current Entity POV.

API Overview Guide 94

Member ID



o Example:

api.Entity.GetLocalCurrencyConsMember(api.Pov.Entity.MemberId).Name

l Get value in Text Field for Dimension Members prior to executing formula
calculation.

o Example: api.Entity.Text(api.Pov.Entity.MemberId, 1)

l Get Percent Consolidation for Parent Child Relationship and specific to user
localization. Can also determine by Scenario Type and Time.

o Example: api.Entity.PercentConsolidation(api.Pov.Entity.MemberId,
api.Pov.Parent.MemberId, api.Pov.ScenarioTypeId,
api.Pov.Time.MemberId).XFToStringForFormula

l Get Percent Ownership for Parent Child Relationship and specific to user
localization. Can also determine by Scenario Type and Time.

o Example: api.Entity.PercentOwnership(api.Pov.Entity.MemberId,
api.Pov.Parent.MemberId, api.Pov.ScenarioTypeId,
api.Pov.Time.MemberId).XFToStringForFormula

Api.Pov.Entity.MemberId Usage
Example using api.Pov.Entity.MemberId:

ErrorLog Result:

Example using api.Pov.Entity.MemberId in a working formula:

API Overview Guide 95

Member ID



Api.Pov.Account.MemberId
Api.Pov.Account.MemberId is obtained from the Account Member Id for the current
Account POV being executed during the calculation. The Account.MemberId is stored as
a unique integer to represent a single Account member. The Account Member Id is also
found using the Grid View in the Account Dimension Library.

Api.Pov.Account.MemberId is used as a property in many functions. Here are some of the
most common functions:

l Get Account Type based on current Account POV

o Example: api.Account.GetAccountType(api.Pov.Account.MemberId)

l Get value in Text Field for Dimension Members prior to executing formula

API Overview Guide 96

Member ID



calculation

o Example: api.Account.Text(api.Pov.Account.MemberId, 1)

Api.Pov.Account.MemberId Usage
Example using api.Pov.Account.MemberId :

ErrorLog Result:

Example using api.Pov.Account.MemberId in a working formula:

API Overview Guide 97

Member ID



Dimension Primary Key - DimPk
DimPk is known as Dimension Primary Key. This is a unique primary key that is assigned
to Dimensions when they are created. It is a combination of the DimTypeId and the DimId.

DimPk is commonly used to identify which Dimension should be used when checking for
members as base members or descendants in a specific Dimension. DimPk is commonly
used in the following functions:

l Get Dimension Primary Key of a Specific Dimension

o Example: api.Dimensions.GetDim("UD1DimName").DimPk

l Check if it is a Base Member of a Specific Ancestor

o Example: api.Members.IsBase(dimPk, ancestorMemberId, baseMemberId,
dimDisplayOptions)

l Get Base Members of Parent from GetMember

o Example: api.Members.GetBaseMembers(api.Pov.UD1Dim.DimPk,
parent.MemberId, Nothing)

DimPK Usage
Example using DimPK :

ErrorLog Result:

Example using api.Pov.UD1Dim.DimPk in a working formula:

API Overview Guide 98

Dimension Primary Key - DimPk



API Overview Guide 99

Dimension Primary Key - DimPk



Dimension Type Id
Dimension Type Id is a property of DimPk. The Dimension Type Id is a unique integer Id
that is assigned to a Dimension. The DimTypeId is found in the Dim table and the
DimTypeId represents each Dimension.

l Entity = 0

l Scenario = 2

l Account = 5

l Flow = 6

l UD1 = 9

l UD2 = 10

l UD3 = 11

l UD4 = 12

l UD5 = 13

l UD6 = 14

l UD7 = 15

l UD8 = 16

The DimTypeId is used in various functions. DimTypeId is most commonly used with the
GetMember or GetMemberId functions where the first property in the function is
DimTypeId. In this case, GetMember and GetMemberId needs to know which Dimension
Id to use for the member the function is looking for.

API Overview Guide 100

Dimension Type Id



l Get a specific Member in a specific Dimension

o Example: api.Members.GetMember(DimType.Account.Id,
"AcctMemberName")

l Get Member Id for a specific Member in a specific Dimension

o Example: api.Members.GetMemberId(DimType.Account.Id,
"AcctMemberName")

DimTypeID Usage
Example using DimTypeId :

ErrorLog Result:

Example using DimType.Account.Id in a working formula:

API Overview Guide 101

Dimension Type Id



Data Unit Dimension POV
Stored calculations run based on the Data Unit POV. The Data Unit Dimension consists of
Cube, Entity, Parent, Consolidation, Time, and Scenario. 

Because stored calculations run off Data Unit Dimensions, these Dimensions are used as
part of If Statements to execute calculations on conditions. The Data Unit Dimensions
should not be used as destination data buffers, and should not be used on the left hand
side of the equation in a api.Data.Calculate formula.

Account related Dimensions such as Account, Flow, and UD’s are not available at run-
time of the calculations. Therefore, they cannot be used in the If Statements for stored
calculations. However, they are available for Dynamic Calculations. 

Run for POV and Check Member Names for Data Unit Dimensions Before Executing
Calculation:

l If api.Pov.Cube.Name.XFEqualsIgnoreCase("CubeName") Then

l If api.Pov.Entity.Name.XFEqualsIgnoreCase("EntityName") Then

l If api.Pov.Scenario.Name.XFEqualsIgnoreCase("ScenarioName") Then

l If api.Pov.Cons.Name.XFEqualsIgnoreCase("USD") Then

Data Unit Dimension POV Usage
Example using api.Pov.Entity.Name :

ErrorLog Result:

Example using api.Pov.Entity.Name in a working formula:

API Overview Guide 102

Data Unit Dimension POV



API Overview Guide 103

Data Unit Dimension POV



Time Functions
The following APIs are some of the most common time functions:

l api.Time.GetYearFromId

l api.Time.GetPeriodNumFromId

l api.Time.GetNumDaysInTimePeriod

l api.Time.AddTimePeriods

l api.Time.AddYears

Api.Time.GetYearFromId
This function gets the year from the current POV Time Id. It evaluates the year and then
introduces logic to execute the formula. 

Api.Time.GetPeriodNumFromId
This function gets the period number from the current POV Time Id. The period is static
and is configured with either months or weeks followed by the period number. For
example: M1 – M12 or W1 –W54. It evaluates the period number and then introduces
logic to execute the formula.

Api.Time.GetPeriodNumFromId Usage
Example using api.Time.GetPeriodNumFromId :

API Overview Guide 104

Time Functions



ErrorLog Result:

Example using api.Time.GetPeriodNumFromId in a working formula:

Api.Time.GetNumDaysInTimePeriod
This function gets the number of days from the current POV Time Id. The number of days
are already programmed depending on the month that is selected. It evaluates the
number of days for a period and then introduces logic to execute the formula. 

Api.Time.GetNumDaysInTimePeriod Usage
Example using api.Time.GetNumDaysInTimePeriod:

API Overview Guide 105

Time Functions



ErrorLog Result:

Example using api.Time.GetNumDaysInTimePeriod in a working formula:

Api.Time.AddTimePeriods
This function adds time periods to the current POV Time Id. It passes that data to different
functions like GetPeriodNumFromId and then introduces logic to execute the formula.

Api.Time.AddTimePeriods Usage
Example using api.Time.AddTimePeriods:

ErrorLog Result:

API Overview Guide 106

Time Functions



Example using api.Time.AddTimePeriods in a working formula:

Api.Time.AddYears
This function adds years to the current POV Time Id. It passes that data to different
functions like GetYearFromId or GetPeriodNumFromId and then introduces logic to
execute the formula. 

Api.Time.AddYears Usage
Example using api.Time.AddYears:

ErrorLog Result:

Example using api.Time.AddYears in a working formula:

API Overview Guide 107

Time Functions



API Overview Guide 108

Time Functions



Using Member Functions for
Calculations
Calculation Member functions are commonly used through the Finance Api’s for
accessing general information for any specified Member within a dimension. The Member
functions allow a rule writer to identify members, get member information, and identify
base and parent members to execute within Member Formulas and Business Rules.

The following are some of the most common Member functions for calculations:

l GetMember

l GetMemberID

l GetBaseMembers

GetMember
This function gets a specific dimension member. It is used for different functions like
api.Data.FormulaVariables, GetBaseMembers function, custommember lists, and when
working with Member Id within data buffers for processes like custom consolidation.

GetMember Usage
Example using GetMember:

ErrorLog Result:

Example using GetMember in a working formula:

API Overview Guide 109

Using Member Functions for Calculations



GetMemberId
This function gets a specific dimension member Id. This technique is commonly used
when working with source Data Buffers where the cells for a specific member Id need to
be changed.

GetMemberID Usage
Example using GetMemberId:

ErrorLog Result:

Example using GetMemberId in a working formula:

API Overview Guide 110

Using Member Functions for Calculations



GetBaseMembers
This function gets base members from a specific parent member. It is commonly used
when working with Member Lists as part of FinanceFunctionType.MemberList, or to get
base members to loop through specific dimensions for api.Data.GetDataCell.

GetBaseMembers Usage
Example using GetBaseMembers:

API Overview Guide 111

Using Member Functions for Calculations



ErrorLog Result:

Example using GetBaseMembers in a working formula:

API Overview Guide 112

Using Member Functions for Calculations



Writing Stored Calculations
When writing a Member Formula or a Business Rule for a Stored Calculation, the new
calculated numbers store data for that Cube, Entity, Parent, Cons, Scenario, and Time
combination. For example, a Data Unit.

Return is never seen in a Member Formula for Formula Pass. Instead of being returned,
many numbers are calculated and stored. When running a Calculation, Translation, or
Consolidation, it calls the Member Formula once for an entire Data Unit.  OneStream
does not tell with which Account, Flow, or User Defined the numbers are being saved.

Initially, this may be confusing because Member Formulas are often written in an
account’s Formula property, and administrators believe OneStream will only allow that
specific Member Formula to write to that specific account. However, putting a Member
Formula in an account’s Formula property is only for organizational purposes. When
OneStream calls that formula, it is currently calculating a Data Unit and will initialize the
API engine with only the Data Unit Dimensions.

Basic stored formulas are commonly used via the Api.Data.Calculate api function. 
Api.Data.Calculate is used in three different ways:

l Api.Data.Calculate using Formula as String, Overload Functions, Eval Function, and
IsDurableCalculatedData

l Api.Data.Calculate using Formula as String and IsDurableCalculatedData

l Api.Data.Calculate using Formula as String and Eval Function

API Overview Guide 113

Writing Stored Calculations



Overload Function
The most common function is Api.Data.Calculate, which sets the value of one or more
dimension values (left side of formula) equal to another (right side). Final arguments
(optional) are added to the formula for Overload Functions, Evals, and Durable Data. 

The Api.Data.Calculate function must abide by the data explosion rules, which means
that the left side and the right side of the formulas are balanced with the same dimension
values on both sides. If a Member is specified for a Dimension anywhere on the right side
of the equation, you must explicitly specify something for that Dimension on the left side of
the equation.

This variation of the Api.Data.Calculate provides Member Filters (all optional) which can
be used to filter the results before saving them to the target or destination. This function is
the most powerful of the Api.Data.Calculate functions as it allows you to filter
intersections. In addition, the Eval function adds the ability to filter down the number of
individual data cells processed by data cell attributes such as CellAmount or CellStatus.

This function is commonly used to filter the source data buffer by base members of an
Account related dimension. For example, A#Sales may be the source data buffer but the
need for all products is not required for the calculation. Instead, A#Sales may need to be
calculated by the base members of Clubs. By using Clubs.Base for A#Sales, the A#Sales
data buffer has been reduced to only include Clubs.Base. 

Api.Data.Calculate Usage
Example using Overload Function in a working formula:

API Overview Guide 114

Writing Stored Calculations



IsDurableCalculatedData
This variation of Api.Data.Calculate lets you define whether data is durable or not.
Durable data is not cleared automatically when a Data Unit is re-calculated. It can only be
cleared by calling api.Data.ClearCalculatedData with the clearDurableCalculatedData
Boolean property set to True. As part of the standard Calculation sequence that runs
during a Calculate or Consolidate, Durable data will be ignored from processing the clear,
unless the clear is specifically defined within the Business Rule or Member Formula.

The most common reason to set the IsDurableCalculatedData to True is for seeding
purposes. As part of the first seeding, the goal may be to seed from one Scenario to
another just once and never seed it again. In this case, the seeded data should not be
cleared at any point during the Calculate or Consolidate process. This technique is
commonly used in Budget or Forecast processes where you are executing the seeding
through a Dashboard. The formula may be applied as a
FinanceFunctionType.CustomCalculate or a FinanceFunctionType.Calculate in a
Business Rule.

IsCurableCalculatedData Usage
Example using IsDurableCalculatedData in a working formula:

Eval Function
Eval has an advanced capability that lets you get at the individual Data Cells in any Data
Unit created while processing an api.Data.Calculate script. It allows Eval() to be wrapped
around a subset of the formula’s math in order to evaluate the Data Buffer that was just
created by running that math.

API Overview Guide 115

Writing Stored Calculations



Prior to the 5.0 version and the introduction of the RemoveNoData function, Eval was
commonly used to evaluate individual data cells in a source data buffer to process based
on cell amount or cell status. Evaluating the number of No Data Cells for a Data Unit is an
important factor for performance and calculation efficiencies. 

Eval was initially an important function to evaluate individual data cells but it has been
replaced with newer techniques such as GetDataBuffer and
GetDataBufferUsingFormula, and looping through cells within the data buffer, as well as
the Remove functions.

Eval Function Usage
Example using Eval in a working formula:

API Overview Guide 116

Writing Stored Calculations



API Overview Guide 117

Writing Stored Calculations



Summary
The Api.Data.Calculate is the easiest and simplest way to write a formula as a Member
Formula or a Business Rule. The construction of an Api.Data.Calculate formula must be
balanced on each side of the formula with the appropriate dimensions to prevent data
explosion. There are three different ways to use the Api.Data.Calculate function: Formula
with Overload, Formula with IsDurableCalculatedData, and Formula with Eval.

From a performance perspective:

1. Never use the Api.Data.Calculate in a loop when using variables.

2. Use Remove functions whenever possible especially for sparse data models with
lots of NODATA cells.

3. GetDataBuffer and GetDataBufferUsingFormula may have a better performance
impact. Try replacing Api.Data.Calculate when doing math with GetDataBuffer
math. In some cases, performance is better by using GetDataBuffer functions in
place of Api.Data.Calculate.

API Overview Guide 118

Summary



Remove Functions
Remove Functions were introduced in the 5.0 release. They replaced the reasons to use
the Eval function. The basic need of the Eval function was to evaluate the individual data
cells within a source data buffer to apply logic for processing. In many cases, OneStream
did not want to process data cells in source data buffers that had a Cell Status of
NODATA or Cell Amount = 0. With the 5.0 release, functions do that without the need for
writing additional logic.

The RemoveNoData and RemoveZeros functions provide the ability to not process
individual data cells within a source data buffer. They wrap the Remove() around a subset
of the formula to prevent processing of individual data cells from within a source data
buffer. Remove functions are used in Member Formulas or Business Rules.

Remove functions are used for performance reasons. Data Units may contain a great
amount of NODATA data cells or 0 value data cells. These cells could be needlessly
processed during calculation execution if these functions are not used in a
Api.Data.Calculate formula.

RemoveZeros
RemoveZeros is used to remove data cells with a cell amount of 0 from the source data
buffer. In addition, this function removes data cells with a cell status of NODATA from the
source data buffer. It is important to evaluate if the 0s are needed for the
Api.Data.Calculate formula during calculation execution.

RemoveNoData
RemoveNoData removes data cells with a cell status of NODATA ONLY from the source
data buffer. Unlike the RemoveZeros function, this function does not remove data cells
with a cell amount of 0.

NODATA cells and 0 cells can be found using the following methods:

API Overview Guide 119

Remove Functions



1. Review the Data Unit Statistics when you right-click on a cell in Cube View.

2. Review the Application Analysis Dashboard and check the Entity Data Statistics
Report.

This is based on the Data Unit and Entity Data Statistics. There may be many Member
Formulas and Business Rules that are driving data creation. Therefore, all formulas would
need to be evaluated to determine whether these Remove functions are used. The higher
the percentage ratio of NODATA cells to Total Number of Stored Records, the more
important it is to use these Remove functions.

Example =  3,203 Stored Records with 2,019 of those Stored Records as NODATA
cells. Nearly 65% of the Data Unit has NODATA cells to process which causes extra
calculation time.

The Review functions can be found in Key Functions under Snippets.

API Overview Guide 120

Remove Functions



Remove Functions Usage
Example using RemoveZeros in a working formula:

Example using RemoveNoData in a working formula:

API Overview Guide 121

Remove Functions



GetDataBuffer Functions
AMember Script may not be defined for the Api.Data.Calculate function because multiple
Data Cells, which seem completely unrelated to each other, are being processed and
none of the Dimension Members are constant. For those situations, use the
GetDataBuffer and SetDataBuffer functions.

GetDataBuffer and SetDataBuffer are more fundamental than using an Eval
function. They allow you to read numbers using a Member Script, process or modify each
cell in the result, and then save the changes. Common GetDataBuffer functions include:

l GetDataBuffer

l GetDataBufferForCustomShareCalculation

l GetDataBufferForCustomElimCalculation

l GetDataBufferUsingFormula

l SetDataBuffer

When using api.Data.Calculate functions, it is important to know which Member a formula
is attached to. For example, if the formula starts with Api.Data.Calculate(“A#Sales1 =
…”), put the formula in the Sales1 account Member’s Formula setting.

However, when using GetDataBuffer functions, the formula may not be writing to a
specific Member. Every Data Cell saved is possibly written to a different dimension
member. In this case, the logic can be developed in a Business Rule and could be created
as a Sub routine to execute throughout Finance Business Rules.

GetDataBuffer Function
GetDataBuffer retrieves a Data Unit’s values during a particular consolidation,
calculation, or translation. When using GetDataBuffer, this is equivalent to the source
data buffer or to the right side of the equation for Api.Data.Calculate. Depending on which
GetDataBuffer function you are using, three or four properties can be used. 

For the basic GetDataBuffer, three properties are used:

API Overview Guide 122

GetDataBuffer Functions



l ScriptMethodType As DataApiScriptMethodType

l SourceDataBufferScript As String

l ExpressionDestinationInfo As ExpressionDestinationInfo

The scriptMethodType typically uses the Calculate option for DataApiScriptMethodType.

The sourceDataBufferScript is equivalent to the right side of the equation for the
Api.Data.Calculate.

The expressionDestinationInfo is equivalent to the left side of the equation for the
Api.Data.Calculate. Frequently, this gets manipulated using the Dimension Id, passing in
the Dimension Member Id for the data buffer primary key.

The GetDataBuffer can be used in various ways, and is not limited to the following:

1. Use Data Buffers to perform Data Buffer math. In some cases, this can perform
better than an Api.Data.Calculate.

2. Use GetDataBuffer in place of Api.Data.Calculate to use in Sub routines which
execute code and instructions, are stored in memory, and are used within Functions
throughout Finance Business Rules.

GetDataBuffer Usage
Example using GetDataBuffer with Data Buffer Math in a working formula:

API Overview Guide 123

GetDataBuffer Functions



Example using GetDataBuffer and SetDataBuffer in Business Rule Using Sub Routine in
a working formula:

API Overview Guide 124

GetDataBuffer Functions



Unbalanced Math Functions
Unbalanced Math Functions
Unbalanced math functions are required when performing math with two Data Buffers,
where the second Data Buffer needs to specify additional dimensionality. The term
Unbalanced is used because the script for the second Data Buffer can represent a
different set of Dimensions from the other Data Buffer in the api.Data.Calculate
text. These functions prevent data explosion. The four Unbalanced Math functions are:

l AddUnbalanced

o Example: api.Data.Calculate("A#TargetAccount = AddUnbalanced
(A#OperatingSales, A#DriverAccount:U2#Global, U2#Global)")

l SubtractUnbalanced

o Example: api.Data.Calculate("A#TargetAccount = SubtractUnbalanced
(A#OperatingSales, A#DriverAccount:U2#Global, U2#Global)")

l MultiplyUnbalanced

o Example: api.Data.Calculate("A#TargetAccount =MultiplyUnbalanced
(A#OperatingSales, A#DriverAccount:U2#Global, U2#Global)")

l DivideUnbalanced

o Example: api.Data.Calculate("A#TargetAccount =DivideUnbalanced
(A#OperatingSales, A#DriverAccount:U2#Global, U2#Global)")

When using Unbalanced Math functions, the first two parameters represent the first and
second Data Buffers on which to perform the function. The third parameter represents the
Members to use from the second Data Buffer when performing math with every
intersection in the first Data Buffer. The math favors the intersections in the first Data
Buffer without creating additional intersections.

It is important that the dimensionality of the Target (left side of the equation) matches the
dimensionality of the first data buffer on the right side of the equation (argument 1).

API Overview Guide 125

Unbalanced Math Functions



Often, these functions would be used when one source data buffer is doing math with a
specific data cell intersection. This could be a rate, driver, or some data cell input.

Unbalanced Math Functions Usage
Example using MultiplyUnbalanced in a working formula:

GetDataBufferUsingFormula Function
The GetDataBufferUsingFormula function uses an entire math expression to calculate a
final data buffer. GetDataBufferUsingFormula can perform the same data buffer math as
Api.Data.Calculate, but the result is assigned to a variable, where Api.Data.Calculate
actually saves the calculated data. 

GetDataBufferUsingFormula calculates multiple source data buffers first. Then, the result
of the math is stored in memory using a Formula Variable. Finally, the Formula Variable is
used anywhere within the Member Formula or Business Rule. This function is commonly
used during rule writing for Planning Business Rules using MultiplyUnbalanced, 
DivideUnbalanced, Trailing functions such as trailing 12 months, and Allocations. 

When using GetDataBufferUsingFormula, FilterMembers and RemoveMembers are used
in conjunction to shrink down dimensional members in the source Data Buffer.

FilterMembers
FilterMembers change a data buffer and only include numbers for the specified
Dimensions. The first parameter is the starting data buffer. This can be a variable name or
an entire math equation in parentheses. There can be as many parameters as needed to
specify Member Filters and different Member Filters can be used for multiple Dimension
types. The resulting filtered data buffer will only contain numbers that match the Members
in the filters.

API Overview Guide 126

Unbalanced Math Functions



GetDataBufferUsingFormula Usage
Example using GetDataBufferUsingFormula in a working formula:

Example using GetDataBufferUsingFormula with FilterMembers and MultipleUnbalanced
in a working formula:

API Overview Guide 127

Unbalanced Math Functions


	Introduction
	Development Technologies
	Programming Language
	User Interface Technology
	Server Technology
	Database Technology
	OneStream API Details and Database Documentation


	Developer Fundamentals
	VB.Net and C#
	In-Solution Documentation
	Business Rules Editor Overview
	Helpful Resources


	Platform Engines
	Workflow Engine
	Stage Engine
	Finance Engine
	Data Quality Engine
	Data Management Engine
	Presentation Engine
	BRApi

	Business Rules
	Anatomy of a Business Rule
	Business Rule Definition
	Business Rule Classifications
	Event Handler Business Rules
	Complex Expressions
	Business Rule Types
	Organizing and Referencing Business Rules


	API Structure and Organization
	Namespaces
	Namespaces Defined
	Namespace Hierarchy
	Microsoft Financial Calls
	In-Solution Development
	Custom Development


	Using System Tools
	System Business Rules
	Database
	Tables
	Tools
	Data Records


	Client API Listing
	Client API Object Hierarchy
	PowerShell


	Event Listing
	Event Handler Business Rules
	Event Firing Sequences


	Introduction
	Member ID
	Api.Pov.Time.MemberId
	Api.Pov.Time.MemberId Usage

	Api.Pov.Entity.MemberId
	Api.Pov.Entity.MemberId Usage

	Api.Pov.Account.MemberId
	Api.Pov.Account.MemberId Usage


	Dimension Primary Key - DimPk
	DimPK Usage

	Dimension Type Id
	DimTypeID Usage

	Data Unit Dimension POV
	Data Unit Dimension POV Usage

	Time Functions
	Api.Time.GetYearFromId
	Api.Time.GetPeriodNumFromId
	Api.Time.GetPeriodNumFromId Usage

	Api.Time.GetNumDaysInTimePeriod
	Api.Time.GetNumDaysInTimePeriod Usage

	Api.Time.AddTimePeriods
	Api.Time.AddTimePeriods Usage

	Api.Time.AddYears
	Api.Time.AddYears Usage


	Using Member Functions for Calculations
	GetMember
	GetMember Usage

	GetMemberId
	GetMemberID Usage

	GetBaseMembers
	GetBaseMembers Usage


	Writing Stored Calculations
	Overload Function
	Api.Data.Calculate Usage

	IsDurableCalculatedData
	IsCurableCalculatedData Usage

	Eval Function
	Eval Function Usage


	Summary
	Remove Functions
	RemoveZeros
	RemoveNoData
	Remove Functions Usage

	GetDataBuffer Functions
	GetDataBuffer Function
	GetDataBuffer Usage

	Unbalanced Math Functions
	Unbalanced Math Functions
	Unbalanced Math Functions Usage
	GetDataBufferUsingFormula Function
	FilterMembers
	GetDataBufferUsingFormula Usage



