@ OneStream”

APl Overview Guide

7.2.1 Release

Copyright © 2022 OneStream Software LLC. All rights reserved.

Any warranty with respect to the software or its functionality will be expressly given in the
Subscription License Agreement or Software License and Services Agreement between
OneStream and the warrantee. This document does not itself constitute a representation
or warranty with respect to the software or any related matter.

OneStream Software, OneStream, Extensible Dimensionality and the OneStream logo
are trademarks of OneStream Software LLC in the United States and other countries.
Microsoft, Microsoft Azure, Microsoft Office, Windows, Windows Server, Excel, .NET
Framework, Internet Information Services, Windows Communication Foundation and
SQL Server are registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries. DevExpress is a registered trademark of Developer
Express, Inc. Cisco is a registered trademark of Cisco Systems, Inc. Intel is a trademark
of Intel Corporation. AMD64 is a trademark of Advanced Micro Devices, Inc. Other names
may be trademarks of their respective owners.

Table of Contents

Table of Contents

Introduction ... 1
Development Technologies ..., 2
Programming Language ... 2
User Interface Technology ..., 2
Server TechnoloQy ... 3
Database Technology ..., 3
OneStream API Details and Database Documentation 3
Developer Fundamentals 4
VB.Netand C# . 4
In-Solution Documentation 4
Business Rules Editor Overview S
Helpful Resources ... 6
Platform Engines ... 8
Workflow ENGINe ... 8
Stage Engine ... 8
Finance Engine ... 9
Data Quality Engine ... 9
Data ManagementEngine 9
Presentation Engine ... 10

API Overview Guide

Table of Contents

BRADI 10
BusinessRules ... 11
Anatomy ofaBusinessRule 11
Business Rule Definition 11
Business Rule Classifications 13
Event Handler BusinessRules 15
Complex EXPreSSiONS ... 18
Business Rule TYPes ... 24
Organizing and Referencing Business Rules ... 33

API Structure and Organization ... 39
NAMESPACES ... oL 39
Namespaces Defined ... 40
Namespace Hierarchy ... 40
Microsoft Financial Calls 42
In-Solution Development ... 43
Custom Development ... 44
Using System ToolIS ... 45
System Business RUIES ... 45
Database 46
Tables . 46

API Overview Guide

Table of Contents

TOOIS 46
DataRecords ... 46
Client APLLIStiNg ... 47
Client API ObjectHierarchy 47
PowerShell . 52
Event Listing ... 55
Event Handler BusinessRules 95
Event Firing Sequences 59
Introduction ... 90
Member D . 91
Api.Pov.Time.Memberld ... 91
Api.Pov.Time.MemberldUsage ... 93
Api.Pov.Entity.Memberld 94
Api.Pov.Entity.Memberld Usage ... 95
Api.Pov.Account.Memberld ... 96
Api.Pov.Account.MemberldUsage ... 97
Dimension Primary Key - DimPK ... 98
DIMPKUSAQEe ... 98
Dimension Type Id ... 100
DimTypelD Usage ... 101

API Overview Guide

Table of Contents

Data Unit Dimension POV . 102
Data Unit Dimension POV Usage ... 102
Time Functions 104
Api.Time.GetYearFromld 104
Api.Time.GetPeriodNumFromId ... 104
Api.Time.GetPeriodNumFromidUsage ... 104
Api.Time.GetNumDaysInTimePeriod ... 105
Api.Time.GetNumDaysInTimePeriod Usage ... 105
Api.Time. AddTimePeriods ... 106
Api.Time.AddTimePeriodsUsage ... 106

Api. TIme. AddYears ... 107
Api.Time. AddYearsUsage ..., 107
Using Member Functions for Calculations ... 109
GetMember .. 109
GetMemberUsage ... 109
GetMemberld ... 110
GetMemberlDUsage ... 110
GetBaseMembers ... 111
GetBaseMembers Usage ... 111

API Overview Guide

Table of Contents

Writing Stored Calculations ... 113
Overload Function 114
Api.Data.Calculate Usage ..., 114
IsDurableCalculatedData 115
IsCurableCalculatedDataUsage ... 115

Eval Function ... 115
Eval FunctionUsage ... 116
SUMIMANY e 118
Remove Functions ... 119
RemoveZeros ... 119
RemoveNoData ... 119
Remove FunctionsUsage ... 121
GetDataBuffer Functions ... 122
GetDataBuffer Function ... 122
GetDataBufferUsage ... 123
Unbalanced Math Functions 125
Unbalanced Math Functions 125
Unbalanced Math FunctionsUsage ... 126
GetDataBufferUsingFormula Function ... 126
FilterMembers . 126

API Overview Guide

Table of Contents

GetDataBufferUsingFormula Usage

API Overview Guide

Vi

Introduction

Introduction

The purpose of the API Guide is to provide detailed information about the technologies
and application programming interfaces available to consultants and developers
interested in extending the functionality of OneStream.

This document contains information about the technologies used in the OneStream
product, naming conventions and organizational approaches used by the OneStream
engineering team. It also includes detailed reference listings for APl methods and events
exposed by OneStream.

API Overview Guide 1

Development Technologies

Development Technologies

Programming Language

The OneStream platform is based on the Microsoft .Net Framework. OneStream’s
underlying codebase is predominately made up of C# libraries with a few VB.Net libraries
in use as well. C# and Visual Basic .NET are the two primary programming languages
used to code against the .NET Framework. C# and VB.NET have very different syntax
elements, but Microsoft developed these languages simultaneously as part of a common
.NET Framework development platform. Both C# and VB.Net are developed, managed,
and supported by the same language development team at Microsoft. They compile to
the same intermediate language (/L) which runs against the same .NET Framework
runtime libraries. Although programming syntax is different for each language, almost
every command in VB has an equivalent command in C# and vice versa. Both languages
reference the same underlying .NET Framework Base Classes to extend their
functionality.

User Interface Technology

The OneStream user interface is based on the Windows Presentation Foundation (WPF)
in order to provide a truly rich end user experience. WPF employs XAML, an XML based
language, to define and link various interface elements. WPF applications can be
deployed as standalone desktop programs, or hosted as an embedded objectin a
website. Windows 10 Store application development provides another opportunity for
WPF based applications to be deployed, but as Windows only applications.

API Overview Guide 2

Development Technologies

Server Technology

All OneStream code is hosted and executed with Microsoft Internet Information Services
(11S). This means that both the Web Server (service code) and Application Server
(service code) are executed within an IS Application Pool process host. The code is
running on the application server tier hosted within the application sever IIS application
pool. This is a very important concept to keep in mind because there will be times when a
Business Rule must interact with different elements of the system. The context in which
the Business Rule is running needs to be understood in order to establish communication
and/or interact with those other system elements.

Database Technology

OneStream was designed to run on all versions of the Microsoft SQL Server relational
database engine (Express, Standard, Data Center, Enterprise and Azure Database as a
Service). For larger organizations, the SQL Server Enterprise edition is recommended
because OneStream makes use of table partitioning. This enables maximum throughput
during heavily multi-threaded operations such as data transformation and consolidation.
The OneStream engineering team is committed to fully utilizing the capabilities of the
most recent versions of SQL Server and to keeping the OneStream platform optimized for
new versions of SQL Server as they become available.

OneStream API Details and Database Documentation

For more information on OneStream API functions and details on the OneStream
Framework and Application database tables and indexes, the OneStream API Details and
Database Documentation is available as part of the documentation. This can be found on
MarketPlace under Software Download. Create a folder on the PC on which this will be
loaded and copy the related zip file:

Right click and extract the zipped file’s contents here. Double-click the file which ends in
chm and this will launch the API Guide.

Contents are organized by the related Platform Engine (see Platform Engines). These are
broken down into Classes (e.g. DataApi), Overload Lists, Methods (e.g. GetDataCell),
Syntax and Parameters. The Index and Search tabs can be used to search by function
name, enumerations, properties, etc.

API Overview Guide 3

Developer Fundamentals

Developer Fundamentals
VB.Net and C#

The OneStream platform is based entirely on the Microsoft .Net Framework as is the
Business Rules engine. Therefore, VB.Net and C# are the logical choice for Business
Rule syntax. At execution time, all Business Rules are compiled on demand and cached
for fast and reliable execution. Writing a Business Rule in VB.Net or C# provides the end
user with many advantages over older products based on VBScript. Business Rule
writers can expect exceptional code performance, better error messaging, and better
error handling because VB.Net and C# are a full featured programming language. In the
end, these capabilities result in a more reliable Business Rule code.

NOTE: There are two broad Business Rule Classifications: Shared
Business Rules and Item Specific Business Rules. Shared Business Rules
can be written in either VB.NET or C#, ltem Specific Business Rules can be
written in VB.NET only.

In-Solution Documentation

The Business Rule Editor includes context sensitive help for API properties and methods
as well as Snippets (code examples). In-solution documentation makes the process of
writing a Business Rule more efficient because both APl Documentation, Objects, and
Samples are presented within the Business Rule Editor window. In addition, useful
coding examples accumulated by the OneStream engineering and consulting teams are
also presented in context sensitive manner within the Business Rule editor. Companies
and partners can author their own Snippets and include them in their application as an
extension of the OneStream predefined Snippets (Snippet Editor MarketPlace Solution
required).

API Overview Guide 4

Developer Fundamentals

Business Rules Editor Overview

The Business Rule editor is a powerful in-solution screen that provides integrated API
context help, syntax editing with intelli-sense, and full outlining capabilities. The actual
syntax content and Business Rule structure will be discussed at length in subsequent

sections of this document.

The image below explains the major regions and elements of the Business Rule editor.

Documentation
_

LR

API Overview Guide

Developer Fundamentals

Helpful Resources

VB.Net

VB.Net is one of the most popular programming languages in use today. This language is
especially popular amongst business users because the syntax is perceived to be more
readable and business user friendly than other programming languages. VB.Net still
shares many of the same syntax elements of older VB dialects such as VB6, VBA and
VBScript. This means that users who have written Macros in Microsoft Excel or used
VBScript to write Business Rules in first generation CPM solutions should feel
comfortable with the core syntax elements of VB.Net. The main learning challenge
business users face when migrating to VB.Net is understanding the object oriented nature
of the language. In comparison to VBScript, VB.Net offers more elegant coding
opportunities. Many of the statements and processes are manually created in VBScript,
butin VB.Net they are encapsulated in object libraries on which users can simply call.

Microsoft VB.Net Learning
Getting comfortable with VB.Net takes a little awareness of the basic libraries and objects

provided by the Microsoft .Net Framework. The link below points to some resources that
business users may find helpful during the VB.Net learning process.

Microsoft Visual Basic

https://msdn.microsoft.com/en-us/library/2x7h1hfk.aspx

C#

C# (pronounced "See Sharp") is a modern, object-oriented, and type-safe programming
language. This language is especially popular amongst developers as it enabled them to
build many types of secure and robust applications that run in .NET. C# has its roots in the
C family of languages and will be immediately familiar to C, C++, Java, and JavaScript
programmers.

API Overview Guide 6

https://msdn.microsoft.com/en-us/library/2x7h1hfk.aspx

Developer Fundamentals

Microsoft C# Learning

The link below points to some resources that business users may find helpful during the
C# learning process.

https://docs.microsoft.com/en-us/dotnet/csharp/

API Overview Guide

Platform Engines

Platform Engines

The platform is comprised of multiple processing engines. These engines have distinct
responsibilities with respect to system processing and consequently they expose different
APl interfaces to the Business Rules they call. This section provides a brief overview of
each engine in the platform and describes the engine’s core responsibilities.

Workflow Engine

The Workflow Engine is thought of as the controlling engine or the puppeteer. The main
responsibility of this engine is to control and track the status of the business processes
defined in the Workflow hierarchies. This engine is primarily accessed through the BRApi
and can be called from other engines in order to check Workflow status during process
execution. The Workflow Engine provides a very rich event model allowing each
Workflow process to be evaluated and reinforced with customer specific business logic if
required (see Appendix 2: Event Listing).

Stage Engine

The Stage Engine performs the task of sourcing and transforming external data into valid
analytic data points. The main responsibility of this engine is to read source data (files or
systems) and parse the information into a tabular format. This allows the data to be
transformed or mapped to valid Members defined by the Finance Engine. The Stage
Engine is an in-memory, multi-threaded engine that provides the opportunity to interact
with source data as it is being parsed and transformed. In addition to parsing and
transforming data, the Stage Engine also has a sophisticated calculation that enables
data to be derived and evaluated based on incoming source data. The Stage Engine
provides quality services to source data by validating, mapping, and executing Derivative
Check Rules.

API Overview Guide 8

Platform Engines

Finance Engine

The Finance Engine is an in-memory financial analytic engine. The main responsibility of
this engine is to enrich and aggregate base data cells into consolidated multi-Dimensional
information. The Finance Engine provides the opportunity to define sophisticated
financial calculations through centralized Business Rules as well as member specific
Business Rules (Member Formulas). It works concurrently with the Stage Engine to
validate incoming intersections and works with the Data Quality Engine to execute
Confirmation Rules which are used to validate analytic data values.

Data Quality Engine

The Data Quality Engine is responsible for controlling data confirmation and certification
processes. This Confirmation Engine is used to define and control the sequence of data
value checks required to assert the information submitted from a source system is
correct. The Certification Engine is responsible for managing user certifications and
determining the Workflow dependents’ completion status. This engine is primarily
accessed through the BRApi and may be called from other engines in order to check data
quality status during process execution.

Data Management Engine

The Data Management Engine provides task automation services to the platform. This
engine executes batches of commands that are organized into sequences which contain
steps. Steps represent entry points or mechanisms to execute features of other engines.
For example, the Clear Data Step uses the services of the Finance Engine. In addition,
the Data Management Engine has the ability to execute a Business Rule Step which
executes a custom Business Rule as part of a Data Management Sequence. This is an
incredibly powerful capability because it provides the ability to string together any
combination of predefined processing steps with custom Business Rule steps.

API Overview Guide 9

Platform Engines

Presentation Engine

The Presentation Engine provides extensive data visualization services to platform. The
Presentation Engine is made up of the following component engines: Cube View Engine,
Dashboard Engine, Parameter Engine, Book Engine and Extensible Document Engine.
The Presentation Engine is responsible for managing and delivering content to the end
user as well as providing a development environment for custom user interface elements.
This engine enables OneStream MarketPlace application development capabilities and
continues to evolve with each product release. Like the Data Management Engine, the
Presentation Engine interacts with and can call the services of all other engines in the
product.

BRADpi

The BRApi is common across all Business Rules, engines and APIs being run, so itis not
an engine itself. A BRApi function runs outside of the other engines and can orchestrate
certain functions from within other engines. In other words, a BRApi function be run from
one engine (e.g. Parser) to tell other engines (e.g. Finance) to execute their own APls
(e.g. APIl.Data.GetDataCellUsingMemberScript). For another example, while the
APIl.Data.GetDataCell function is available from within the Finance engine, a similar
BRApi called GetDataCellUsingMemberScript can be run from any engine if given the
appropriate arguments. A common use is BRApi.ErrorLog.LogMessage from any engine.

API Overview Guide 10

Business Rules

Business Rules

Anatomy of a Business Rule

This section provides a detailed explanation of the following:
» Business Rule structure and fundamentals

+ Business Rule Classifications

Specific Business Rule Types

Business Rule organization

OneStream Business Rule framework

Best practices for Business Rule architecture

Business Rule Definition

A Business Rule is a class, meaning each business rule is an independent object
encapsulating code written in either VB.Net or C#. A business rule can be a one-line call
to write a log message, or it can be a full code library containing other custom classes,
methods and properties.

Each OneStream Business Rule has a predefined Namespace, a Public Class and a
Public Function that the OneStream platform engines invoke when the Business Rule
needs to be called.

NOTE: There are two broad Business Rule Classifications: Shared
Business Rules and ltem Specific Business Rules. Shared Business Rules
can be written in either VB.NET or C#, ltem Specific Business Rules can be
written in VB.NET only. All code examples presented in this guide will be
shown in VB.NET.

API Overview Guide 1"

Business Rules

Predefined Object Names

+ Namespace: OneStream.BusinessRule.<Business Rule Type>.<Unique Business
Rule Name>

» Class: MainClass;

* Function: Main

Example Business Rule Structure

Imports System.[ata.Comson
Imports System.I0

Isports Systes
Imports System
Imports System

Isparts Micros alBasic Bardrews Fulle
Imports System s .Fores "
’ Mamespace
Imports OmeStre Shared, Common ~—
Isparts Onestres o WeF
Imports OneStream.Shared.Engine
Imports Onedtresm,Shared,Database s
wam. Stage .Englne ETE
Business Rulle
Mame

oniimfio, Byval globals 4z BRGlobels, Syval spd As Object, ByWel srgs As Extenderdrgs) As Object

Write a message To The T
BRApd. Errorlog, LogMessage(si,

Return Wothing

Catch ex As Exception Stancard
Theow ErrorHandler.Loghrite(ss, M Class Mame
Emd Try
E o
End Class
End Memespece
-

Function Prototypes

Each Business Rule has one standard entry point Function Title called Main. The
Function definition below represents the standard prototype used by the Main Function in
each OneStream Business Rule. The Main Function always has the same standard
parameter layout, but the last two parameters, APl and ARGS, contain different object
references based on the type of Business Rule being executed.

Public Function Main

(

API Overview Guide 12

Business Rules

ByVal si As SessionInfo, Connection Object Required to use API

ByVal globals As BRGlobals, Global Variable Object Used to Share Values
ByVal api As Object, Specific API object (Different for each Type)

ByVal args As ExtenderArgs Specific Arguments (Different for each Type)

)
As Obiject

Business Rule Classifications

OneStream provides classifications for business logic organization. At the core, all
business logic is delivered and executed as compiled VB.Net or C# code. This means no
matter what type of business logic is used, there is a consistency in the syntax and
compilation process. The reason for different classifications has to do with when and how
the business logic is invoked and how the business rule is scoped.

There are two broad business rule classifications: shared business rules and item specific
business rules. Each engine in the system may support one or both business rule
classifications. Whenever a processing sequence is executed in the platform, the
particular engine(s) involved evaluates how and what business logic is associated with
the process. This may include shared business rules (named and event handlers) as well
as item specific business rules (member formulas, logical expressions, and confirmation
rules).

NOTE: Shared business rules can be written in either VB.NET or C#, item
specific business rules can be written in VB.NET only.

Finance Engine Example

During a consolidation process, a Named Business Rule is associated with the Cube
being processed. The Cube contains Member Formulas associated with some of its
Dimensions. In this case, the Finance Engine compiles both the Named Business Rule
and each individual Member Formula in preparation for the calculation sequence.

API Overview Guide 13

Business Rules

Stage Engine Example

A similar example applies to the Stage Engine. During a parse and transform Workflow
process, a Named Business Rule is associated with the Data Source or Transformation
Rules. In addition, individual Data Source Dimensions or Transformation Rules have
associated Logical Expressions that are also fired. In this case, the Stage Engine
compiles both Named Business Rules and each individual Logical Expression in
preparation for execution during the parse and transform execution sequence.

Shared Business Rules

Shared Business Rules are reusable because the rule is written and stored centrally in
the Business Rule Library. This means the same rule can be called or referenced by
multiple platform components. For example, the Business Rule highlighted in the image
below is a general Extensibility Rule. This rule can be executed from the Business Rule
Editor, called by a Data Management Job or called by another Business Rule. Shared
Business Rules are the code files seen in the tree when the OneStream Syntax Editor is
open, they are organized by type, (see Business Rule Types in Chapter 4: Business
Rules) and named by the user who created the rule.

(I} Business Rules - OPS_ShipPackageUsingName
DIXORI¢INB

U Fndfoe Properfles | Formulz
W Parser I)
C 5 ¥, —= L]
»- [Connector - # ¢+ R = 2|7 &
B Conditional Rule o @ args 16 | Imports OneStream.Finance.Engine .
- 7 Imports OneStream.Finance.Database
i Derivative Aule 6 BfApi

»- [Dashboard Data Set
»- [Dashboard Extender
»-m Dashboard YFER Stming

4 |m Extensibilty Rules

% OPS_ShipPackageUsingID o
+/ OPS_ShipPackageUsingName : J

API Overview Guide 14

Business Rules

Event Handler Business Rules

Event Handler Business Rules are a predefined set of Shared Business Rules and are
always defined as an Extensibility Rule Type. Event Handler Rules are invoked during a
processing sequence by their related platform engine in order to supplement the process.
Determine/filter how/if the execution behaves for specific Workflows or the Cube POV.
When an Event Handler Business Rule is called, the calling engine supplies information
about the executed process providing context about the process and information about
the specific sub-event executed.

Predefined Event Handler Business Rules

The list below details the specific predefined Event Handlers available in the platform.
For details on the individual sub-events that fire for each Event Handler Business Rule,
see Event Listing.

« Data Management Event Handler

Data Quality Event Handler

Forms Event Handler

Journal Event Handler

Save Data Event Handler

Transformation Event Handler

Workflow Event Handler

Wcf Event Handler

Item Specific Business Rules

Item Specific Business Rules are complete rules like Shared Business Rules, however
they are authored and stored with the specific platform item with which the rule is
associated. There are different reasons for using Iltem Specific Business Rules vs Shared
Business Rules.

API Overview Guide 15

Business Rules

For example, when creating a one-off rule without any reusable value to other
components in the system, write an Item Specific Business Rule directly on the platform
component because it requires a very specific piece of business logic. Another example,
which is more common when creating calculation logic for an analytic model, is to write a
Member Formula that directly associates a calculation with a Dimension Member. This
creates system maintenance clarity and maintainability.

Item Specific Rules, in particular Member Formulas, can have a positive performance
impact because they allow calculations to be broken down into formula passes and
processed in a parallel (multi-threaded) fashion. The same formulas can be written in a
Shared Finance Business Rule, but the calculations will always execute in the serial
manner defined in the rule.

Item Specific vs Shared Code Structure

As mentioned above, an Item Specific Business Rule and a Shared Business Rule are
identical in code structure. When writing an Item Specific Business Rule, the code editor
presents some hidden sections in the code window:

» Formula Header

» Formula Footer

» Helper Function Header
» Helper Function Footer

These hidden sections (i.e. Regions) keep the formula / expression as readable as
possible. In a Shared Business Rule, these sections are visible which make the rule more
verbose. The idea behind the Item Specific Business Rule is to create discrete code
blocks that are easy to manage and have limited interdependencies. If one knows how to
write a Shared Business Rule, then she/he also knows how to write an Item Specific
Business Rule and vice versa.

Item Specific Rules are categorized into three types: Member Formulas, Complex
Expressions, and Confirmation Rues. These relate to the platform engine with which they
are associated.

API Overview Guide 16

Business Rules

Member Formulas

A Member Formula is assigned to a Dimension Member and executes within the Finance
Engine during a Cube processing sequence (see the Formula Design Guide in the
OneStream Design and Reference Guide for more information on processing
sequences). Member Formulas provide the same level of syntax and logic capability that
exist when writing a Finance Shared Business Rule, however custom consolidation,
elimination, and translation logic cannot be written. Member Formulas are a great choice
for writing logic limited to calculations based on a single Member and calculations that do
not span Dimensions. If Member Formulas are written with these constraints in mind,
then the Dimension Member and its formula can be reused in different Cubes without
having dependencies on other Dimensions. This does not mean that a Member Formula
cannot look at other Dimensions. Referencing Dimension Members outside of the
specific Dimension where the formula exists will limit the reusability of the Dimension, or
require all referenced Dimensions be used together in any new Cube.

Member Formulas are written directly on a Dimension Member within the Dimension
Library. Navigate to the specific Member’s Formula property and click the ellipsis in order
to store a Member Formula. The example below is a simple working capital Member
Formula.

API Overview Guide 17

Business Rules

S) Fomeala Editor - fCurfatio]

W

- 7 8| ¥

L L Xz Createpbembersos = =
[L ! " g, Bt 11{=AnS [o/ AR J00D DeTag™
| -y [24 Eswura gl Davs. Gethetalell(Ani SR JuTep/ Anddobd: Colug™)

X Applyidemberid?
M ApplyDateC elPkT
Xz hpphyDatatufferd
X GetDataCel

Xz GetDataCed

-4

GRtDEtpC el Ex
GetDataCellEx
+ GetDanadellix
= Gt DataCellFrom|

+ SetDutaCell

oM H oM M

: SetDutaktiachme
% ParseCrataBuMers: || 1 L
Cefiniticr | Objects | Sample]

Syrita

Publx Function GetDataCellf2yyal datalellPk A DataCellPk) As Datalel

oK Cancel

Complex Expressions

A Complex Expression is a Business Rule assigned to Data Source Dimensions,
Derivative Rules, and Transformation Rules and execute within the Stage Engine during
a transformation processing sequence. Complex Expressions provide the same level of
syntax and logic capability that exist when writing a Stage Shared Business Rule. The
primary reason for using a Complex Expression rather than a Stage Shared Business
Rule is the logic being written has no reusability. Complex Expressions isolate the logic
by associating it directly with a specific item.

API Overview Guide 18

Business Rules

Using Complex Expressions in a Data Source

Apply Complex Expressions to a Data Source Dimension by selecting the Dimension
requiring custom logic and setting the Logical Operator. The Logical Operator property
opens the Logical Expression Editor dialog and allows the user to either select a Shared
Parser Business Rule or write a Complex Expression. Both Shared Parser Business
Rules and Parser Complex Expressions result in the exact same compiled Business Rule
code. The exception is a Complex Expression is only executed for the Dimension to
which itis applied and a Shared Parser Rule is shared and can be called by many
Dimensions.

N ROk i i
SSEF¥RIFEF
T 1
o

Largis

API Overview Guide 19

Business Rules

Using Complex Expressions in a Derivative Rule

Apply Complex Expressions to a Derivative Rule by selecting the individual Derivative
Rule requiring custom logic and setting the Logical Operator. Clicking the Edit Rule

Formulas % toolbar button opens the Logical Expression Editor dialog and allows the
user to either select a Shared Derivative Business Rule, write a Complex Expression, or
use a Pre-Built Expression. Both Shared Derivative Business Rules and Derivative
Complex Expressions result in the exact same compiled Business Rule code. The
exception is a Complex Expression is only executed for the rule to which it is applied and
a Shared Derivative Rule is shared and can be called by many rules.

s A 0

B General
 Deserigticn Dernvative Rules
8 Sacurity
Aegess Group Everyane & -
bainterance Grou Everyans la' -
B Sattings
Cubse Dimension Jas (Deivatine) i}

+ =0 | Type

Flusle Mame T Description T Aule Expression T Derivative Type T Ocder T
Calculate Value®Based On Driver Calculate Health Insurance Using A#[41107] < <_Healthins 18
Create Cament Asset T ::.I:: Dwerivative Expression Editor [Caloulate Value Eased On Driver in Cubaj ox g
Totad Exchude Preor Call L
Totad Include Prior Caley Expression Type | Complex Expression W
Creste If Greater Than 1 o
- - =
Use An Attrubut Crites = ¢+ 2 2| 63| & B0
Literal Brofix B ﬁlarﬂ Retrieve Corporate Health Dajurance Deiwer Exflenie X Cell From Driver Cube s o
2 Ois vslueHssl thInsABtE A5 Decimal = Decissl. 7
Literal St b args 6 oim celllnfo 4s DetelellInfolsingMesberSeriptffs BRApd.Finence.Oate.GetDateCelllsd 0
G - ' If ot celllnfo Is Mething Then
roup By Left 2 Chars B 0 oo
Group By dh BRApi If Wot cxlllnfo.DutaCellbx T4 Motndng Tien
Group By Chars 3.4 valusHealtnIssRete = celllefo DataQllley. Dutslell Cel LASounT 0
End 17
Ena IF
Ruls querles the Sslary Account
Gim velueSalary As Decimal = angs {olwmnivalee
‘Calculate snd returs Health Insurance Cost
If (velueSalary <3 Decimal.lero) bed (velusMesithInsRate <3 Decimsl, Jerc) Thes
Return (valuelalery * walueriealthinidate)
Elss
J urn the value from the stage
Return arps.LolumniValus
End T -
L] [
O Cancel
ol NG Page 1 oOf 1

API Overview Guide 20

Business Rules

Using Complex Expressions in a Conditional Transformation
Rule

Apply Complex Expressions to a Transformation Rule by selecting the individual
Transformation Rule requiring conditional logic and setting the Logical Operator. Clicking

the Edit Rule Formulas ¥x toolbar button opens the Logical Expression Editor dialog and
allows the user to either select a Shared Conditional Business Rule or write a Complex
Expression. Both Shared Conditional Business Rules and Conditional Complex
Expressions result in the exact same compiled Business Rule code. The exception is a
Complex Expression is only executed for the rule to which it is applied and a Shared
Conditional Rule is shared and can be called by many rules.

NOTE: Shared Conditional Business Rules and Complex Expressions
cannot be applied to One-To-One Transformation Rule Types. One-To-One
Transformation Rules are executed during the parsing process and
therefore are completely processed prior to the conditional mapping
process.

API Overview Guide 21

Business Rules

f Transfoarnation F ules - Flows *

A

It & |5 & |

B General

B Security
ocess Gffou |-
Maintedlance Group @ |-
@
T Target Value Flows
EndBal Compll Expression] 0] r

I:'-IZ:I Conditional Expression Editor [1x]

Expression Type Comiphex Expression

| - Beginning Balance

& ¢ | 2 2|V 8|« e
" aﬁe;.'l d Grab the target account wvalue -
5 Dim account As SEring = args.GetTarget(=as=)

» s : kals

Afsign the flow sesber Dased of the FLrst character of the Tarpet sfcount

* & BRARI Select Case Left{account,l) rgtad - CTA Geganning Galance
Case "17,727,73" avement
Return “End_Inp®
Case Else - Check Sum Amt
Return “Mone"
J - 5 1
ind Sriner Ending Balance
HC - Begin Balance Headcound
Ifes
pations
- HC - Chedk Sum Headoount
F 4 IHC - Ending Balance Headcoue!
oK Cancel
2P @ | Page 1 of 1

Confirmation Rules

Confirmation Rules are called by the Data Quality Engine and Finance Engine. Apply
Complex Expressions to Confirmation Rules by selecting the individual Confirmation Rule

and clicking the Edit Rule Formulas ¥x toolbar button. This button opens the Rule Editor
dialog and allows the user to write a Complex Expression containing the Confirmation
Rule logic. A Confirmation Rule is only written on the specific rule to which it applies.
Confirmation rules do not have an equivalent Shared Business Rule because each
Confirmation Rule requires specific logic.

API Overview Guide 22

Business Rules

TIP: Shared Finance Business Rules can be called from a Confirmation Rule.
Create standard helper functions in a Shared Finance Business Rule and call
them from a specific Confirmation Rule creating some reusable logic and
improving the overall Confirmation Rule infrastructure maintenance (see
Business Rule Organization and Referencing in Business Rules).

! Deseription
B Security

Antess Group

Maintenarce Grffup & -
B Settings
Scenana Typa lame
+ =0 _
Order T Ruff Mame q T Action T Failure Mes
5 Error (Fadl) Balance Shef
You must ks
cument bala
= - . e
- " LT e Attach your
» oap 24 [[valigate that Assest Mimes Liselities/Eguity is @ a
25 | args.ConfirsationRuleArgs .DlsplayVales = Sol.Dats. GetDatalell JRAFLO0FS - ARTFII9™) .cEl LASUNT
®oghangs 26| I argi.fenfirsatisafuledsge. Diipligvaloe = @ TRan
. I Retyrn Trye
G BRAp | b1se
» G Snippets] Retwrn False
0 End If
4 "

(214 Canced

API Overview Guide

23

Business Rules

Business Rule Types

Finance

Finance Business Rules are used to generate multi-Dimensional calculations. These
Business Rules are written as Shared Business Rules and applied to a Cube or Member
Formulas.

Invoking Engine
Finance

API Object Type
FinanceAPI

Args Object Type
FinanceRulesApi

These contain multiple child objects that are populated based on how the rule type is
called.

» FinanceRulesApi.MemberListHeadersArgs

» FinanceRulesApi.MemberListArgs

FinanceRulesApi.DataCellArgs

» FinanceRulesApi.FXRateArgs

FinanceRulesApi.ConfirmationRuleArgs

» FinanceRulesApi.CalculateArgs

FinanceRulesApi.DrillDownArgs

Common Usage

The list below details the common use cases that apply to Finance Business Rules:

API Overview Guide 24

Business Rules

 Stored Calculation of a Member Value

« Dynamic Calculation of a Member Value

* Programmatic Member Filters

« Scenario Copy Logic

« Allocation Logic

» Conditional No Input Rules

» Custom Consolidation Logic (Shared Business Rule only)
« Custom Translation Logic (Shared Business Rule only)

» Custom Elimination Logic (Shared Business Rule only)

« Confirmation Rule Logic

» Custom Calculations (Done via Dashboard Parameter Components)

Parser

Parser Business Rules are used to evaluate and/or modify field values being processed
by the Stage Parser Engine as it reads source data. These Business Rules are written as
Shared Business Rules or Logical Expressions and applied to a Data Source Dimension.

Invoking Engine
Stage

API Object Type
ParserDimension

Args Object Type
ParserArgs

Common Usage

The list below details the common use cases that apply to Parser Business Rules.

API Overview Guide 25

Business Rules

Custom Parsing Logic

Field Value Concatenation

Field Value Bypassing

Evaluate Field other than Current Field being Parsed

Connector

Connector Business Rules are used to communicate with, collect data from, and drill back
to external systems. These Business Rules are written as Shared Business Rules and
applied to a Data Source.

Invoking Engine
Stage

API Object Type
Transformer

Args Object Type
ConnectorArgs

Common Usage

The list below details the common use cases that apply to Connector Business Rules.
» Source System Connection Logic
» Source System Field List Logic
» Source System GetData Logic
« Source System DrillBack Logic
Conditional Rule
Conditional Rules (mapping) are used to conditionally evaluate mapping criteria during

the data transformation process. These Business Rules are written as Shared Business
Rules or Logical Expressions and applied to a Transformation Rule definition.

API Overview Guide 26

Business Rules

Invoking Engine
Stage

API Object Type
Transformer

Args Object Type
ConditionalRuleArgs

Common Usage

The list below details the common use cases that apply to Conditional (mapping)
Business Rules.

« Evaluate Source Values and Conditional Map Target

« Evaluate Other Mapped Value and Conditional Map Target

DerivativeRule

Derivative Rules (derive data prior to mapping) are used to evaluate and/or calculate
values during the data derivation process. These Business Rules are written as Shared
Business Rules or Logical Expressions and applied to a Derivative Rule definition.

Invoking Engine
Stage

API Object Type
Transformer

Args Object Type
DerivativeRuleArgs

Common Usage

The list below details the common use cases that apply to Derivative (derived data)
Business Rules.

API Overview Guide 27

Business Rules

Calculate Mathematical Expressions

Lookup Value from Transformation Cache for use in Calculations

Lookup Value from Cube for use in Calculations

Source System Check Rule Logic (validation rules on source data)

Cube View Extender

Cube View Extender Rules are used to apply advanced Cube View formatting to any
Cube View Report. Using custom formatting allows the Cube View design to go beyond
the standard Cube View formatting properties and provides flexibility for specific
formatting needs. The Extender Rule is used in conjunction with the Custom Report
Formatting properties on the Cube View under General Settings|Report Tab.

Invoking Engine
Presentation

API Object Type
No specific APl (used General BRApi)

Args Object Type

CubeView
CubeViewExtenderFunctionType
CubeViewExtenderReport
CustomSubVars

FunctionType

Common Usage

 Display different logos on select reports based on conditional logic or security and
manage their placement and size

API Overview Guide 28

Business Rules

» Customize the page number in the header or footer
Page numbers can be on the top or bottom row of a report and the horizontal
position can be specified for rows. This only applies to the top or bottom rows.

« Format individual header and footer fields

» Customize the Cube View Header
o Control the Left, Right, Center Subtitle widths
o Control the font size of Title and Subtitles

» Customize the date display

» Customize bottom text alignment

« Apply Conditional Formatting
Format cells based on their contents. Change the text color of a value in order to
effectively hide the result.

» Customized Report row and column formatting such as borders, background and
text colors and alignment

DashboardDataSet

DashboardDataSet Rules are used to create programmatic query results. This rule type
combines multiple types of data into a single result set using the full syntax capability of
VB.Net or C#. These Business Rules are written as Shared Business Rules and applied
to Dashboard Data Adapters or Dashboard Parameters.

Invoking Engine
Presentation

API Object Type

No specific APl (used General BRApi)

Args Object Type
DashboardDataSetArgs

API Overview Guide 29

Business Rules

Common Usage

The list below details the common use cases that apply to DashboardDataSet Business
Rules.

« Combine Different Types of Data for a Report
 Build Programmatic Data Queries (e.qg., analytic plus SQL)
« Conditionally Build Data Query Reports

« Conditionally Build Data Query Parameters

DashboardExtender

DashboardExtender Rules are used to perform a variety of tasks associated with custom
Dashboards and MarketPlace Solutions. These Business Rules can be thought of as
multi-purpose rules and make up the majority of the code written in a MarketPlace
Solution. In addition, they are written as Shared Business Rules and applied to
Application Dashboard Parameter Components (Buttons, Combo Boxes, etc.).

Invoking Engine
Presentation

API Object Type
No Specific API (uses General BRApi)

Args Object Type
DashboardExtenderArgs

Common Usage

The list below details the common use cases that apply to DashboardExtender Business
Rules.

o Execute a Task when the User Clicks a Button

» Perform a Task and Show a Message to the User

API Overview Guide 30

Business Rules

Perform a Custom Calculation

Upload a File from the End User’s Machine

Automate a Workflow

Build a Custom Workflow

Create Custom Data Tables

These rules are basically limited to the imagination of the developer

DashboardStringFunction

DashboardStringFunction (reference as XFBR) Rules are used to process conditional
Dashboard Parameters. These rules inspect and alter a Dashboard Parameter value
using the full syntax capabilities of VB.Net or C#. DashboardStringFunctions are written
as Shared Business Rules and called by using a XFBR(BusinessRuleName,
FunctionName, UserParam=[UserValue]) specification anywhere a standard Dashboard
Parameter is used.

Invoking Engine
Presentation

API Object Type
No Specific API (uses General BRApi)

Args Object TypeDashboardStringFunctionArgs

Common Usage

The list below details the common use cases that apply to DashboardStringFunction (i.e.,
conditional Parameters) Business Rules.

» Evaluate a Dashboard Parameter and conditionally return another Value

» Evaluate a Cube View Parameter and conditionally return another Value

API Overview Guide 31

Business Rules

» This Business Rule can be substituted anywhere a Dashboard Parameter is used in
order to evaluate the Supplied Parameter value and return a different value

Extender

Extender Rules are the most generalized type of Business Rule in the platform. Use
these to write a simple utility function or a specific helper function called as part of a Data
Management Job. These Business Rules are written as Shared Business Rules and
executed directly from the code editor, a data management job or the Finance Engine
during an external Dimension request (i.e., read Dimension Members from an external
list).

Invoking EngineBusiness Rule, Data Management, Finance

API Object TypeNo Specific API (uses General BRApi)
Args Object Type

ExtenderArgs

This contains multiple child objects that are populated based on how the rule type is
called.

« ExtenderArgs.DataMgmtArgs

» ExtenderArgs.ExternalDimSourceArgs

Common Usage

The list below details the common use cases that apply to Extender Business Rules.
» Create a General Helper Rule for Administrators Only
» Create Data Management Business Rule Step Logic

« Create a Query to fill an External Dimension List

API Overview Guide 32

Business Rules

Organizing and Referencing Business Rules

The Business Rule framework provided organizes business rules to maximize their reuse.
You can link business rules and reference one business rule from another. You can also
link and call external DLLs from a business rule. This section describes how to reference
a shared business rule and an external DLL from another business rule.

Defining a Reference to a Shared Business Rule

When you create a shared business rule is created, its public members can be referenced
and run by other shared and item specific business rules. Creating a shared or referenced
business rule lets you:

» Create a list of shared constant values.
» Create a set of standard helper functions.

» Centralize the maintenance of shared logic.

Reference Syntax

This section defines the syntax required to reference a shared business rule from another
shared or item specific business rule.

Shared business rules referencing other shared business rules

To create a reference from one shared business rule to another, go to the rule calling a
Public Method of another shared business rule and make a declaration in the Referenced
Assemblies property. The syntax requires a BR\ prefix and the business rule name to
reference. A rule may reference either a VB.NET or C# rule.

TIP: Reference multiple business rules by creating a comma-separated list of
reference statements.

API Overview Guide 33

Business Rules

Iﬂj Business Rules - OPS_ShipPackageUsinglD
DI O HI«| B

e =r =rrwry =

% CPP_ParamHelper Properties | Farmula
E P; [
x C3P_ParamHelper @ General
+E OPS_ParamHelper e
% PLP_ParamHelper
% SNE_ParamHelper Referenced Assemblies BR\OPS_PostalServiceHelper
VR TLP_ParamHelper B Security
4 W Extensibility Rules Access Group Everyone & |-
+/x OP5_ShipPackageUsinglD Maintenance Group Administrators @ |-

% OPS_ShipPackageUsingMarms _

Syntax

BR\<business rule name to reference>
Example (Single Reference)
BR\OPS_PostalServiceHelper
Example (Multiple References)

BR\OPS_PostalServiceHelper; BR\CPP_SolutionHelper

Referencing a Shared Business Rule From an Item Specific
Business Rule

Finance, Parser, ConditionalRule and DeriviativeRule shared business rules have
equivalent item specific business rules. When you create a shared business rule, set the
Contains Global Functions For Formulas property to True to make the rule available to
\item specific business rules. Item specific business rules do not have a Referenced
Assemblies property so can only reference shared rules of the same engine type with the
Contains Global Functions For Formulas property set to True.

In the example below, the SharedForecastSeeding rule can be called from any other
Finance rule because its Contains Global Functions For Formulas property is True.

API Overview Guide 34

Business Rules

E:I:l Business Rules - SharedForecastSeeding
DI % DO K|«

4[| Finance Properties | Formula

¥ CorporateBusinessRules

% SharedConfirmationRules B General
+% SharedForecastSeeding o
JE ¥FR_CVDataCellHelper

_ . Contains Global Functions For Formulas True
% XFR_CVFavUnFavvariance Sk

: Referenced Assemblies
¥X XFR_MemberListalphabetical T N T T T LT P T erery

B Security
[% XFR_MemberListEntitylsiC
B ! Aceess Group Everyone
¥ XFR_MemberListRanked .
- Maintenance Group Everyone & |-

+x XFR MemberListSoarseData -

NOTE: If a Finance business rule has Contains Global Functions For
Formulas set to True, changes to the business rule have a metadata status
impact and change the Calculation Status to OK, MC. This dependency
must occur because a global rule can be used by a member formula
calculation which can impact the status of the Finance Engine’s data
(analytic / Cube data).

Using a Code Declaration

Once areference is made to a shared business rule, its Public Methods (Functions /
Subs) can be called. To access the Public Methods, declare an instance of the rule in the
code using the Business Rule’s fully qualified Namespace. This creates an object variable
that references the shared business rule calls its Public Methods.

Example Declaration
‘Declaring an object variable to reference a shared business rule.

Dim opsHelper As New
OneStream.BusinessRule.DashboardExtender.OPS
PostalServiceHelper.MainClass

Example Usage

‘Executing a function on the Reference business rule object variable

API Overview Guide 35

Business Rules

Dim desc As String opsHelper.GetFieldFromID(si, "Dashboard",
"Name", dashName, "Description")

Referencing an External .Net DLL

Developers can build and reference custom Microsoft .Net DLLs from shared business
rules. These are written in either VB.Net or C#. Custom, encapsulated business logic can
be protected within an external DLL written in Microsoft Visual Studio.

Create a DLL referenced by a business rule to:
» Protect domain specific intellectual property (hide value programming logic).

» Separate code with dependencies on other programs (system integration
wrappers).

« Complex logic requiring development tools only available within Microsoft Visual
Studio (Web Service Discovery and Interface Development).

Installing and Configuring DLLs

Perform these tasks to enable an external DLL to be referenced from a shared business
rule.

1. Specify the BusinessRuleAssemblyFolder located in the Application Server
configuration file. This folder should be shared by all application servers. The folder
must be accessible via the Account Credentials used to configure the IIS
Application Pool on the application server.

This setup is a best practice, but not required. Alternatively, you can reference the
external DLL from a folder on each application server. When the DLL is updated,
copy it to a standard folder on each application server.

2. ldentify or create the external DLL to be called and copy it to
BusinessRuleAssemblyFolder. When a business rule runs and an external DLL
reference with the XF\ prefix is found in the Referenced Assemblies property of the
rule, the application server looks in the BusinessRuleAssemblyFolder specified in
the application server configuration file to find the DLL to reference.

API Overview Guide 36

Business Rules

3. Add a reference specification to the DLL in the Referenced Assemblies property of
the business rules using it.

Reference Specification

This section defines the syntax required to reference an external DLL using the shared
business rule's Referenced Assemblies property. There are three methods to reference
an external DLL.

Method 1

This method uses the XF\ prefix to create a reference to an external DLL located in the
BusinessRuleAssemblyFolder folder which is specified in the application server
configuration file.

Syntax
XF\<External DLL Name to Reference>

Example (Single Reference)
XF\ExternalCode.DLL

Example (Multiple References)
XF\ExternalCode1.DLL;XF\ExternalCodeZ2.DLL

Method 2
This method uses the file system path C:\DLLFolderName\ to create a reference to an
external DLL on each application server.

NOTE: The same folder path and DLL must exist on all application servers.
This method is not a best practice for custom business logic DLLs because it
increases maintenance.

You can use a file system path to reference an external DLL that already exists on an
application server, as part of the operating system or as an installed component.

Syntax
C:\DLLFolderName\<External DLL Name to Reference>

Example (Single Reference)
C:\DLLFolderName\ExternalCode.DLL

Example (Multiple References)
C:\DLLFolderName\ExternalCode1.DLL; C:\DLLFolder\ExternalCodeZ2.DLL

API Overview Guide 37

Business Rules

Code Declaration

Once a reference is made to an External DLL from a shared business rule, the Public
Methods (Functions / Subs) of that external DLL can be called. To access the shared
business rule’s Public Methods, declare an Import to the Namespaces defined by the
DLL, then create an instance of the desired class to use in the code.

Example Import

Imports YourNamespace.SubNamespace

Example Declaration

‘Declaring an object variable to reference a class on the external DLL
Dim extHelper As New YourClass

Example Usage

‘Executing a Function on the external DLL

Dim desc As String extHelper.YourFunciton(“SomeParameter”)

Method 3
This method uses a Windows environment variable to create a reference to an external
DLL. All standard Windows paths are supported and the name is determined by .NET.

Syntax
%System%\DLLName.DLL

Example
%userprofile%\documents\WindowsBase.DLL

API Overview Guide

API Structure and Organization

API Structure and Organization

Namespaces

The Microsoft .Net Framework organizes code libraries into subject areas called
Namespaces. The process begins with identifying the Namespaces (libraries) required
for the procedure being created. Namespaces provide distinction to the objects and
methods that exist in a code library. As a best practice, Namespaces typically start with
the name of the company that created the code library.This prevents naming conflicts for
objects that share a common name, but were created by different software providers.

In an effort to keep coding syntax as terse as possible, the .Net Framework allows the
user to specify common Namespaces to use at the top of a Business Rule. These lines
are preceded by the key word Imports. Adding Imports Statements prevents having to
type an object’s fully qualified name within a Namespace.

All Business Rules are prepopulated with both the commonly used Microsoft
Namespaces as well as the OneStream specific Namespaces. For example, adding the
statement Imports System.Math to a Business Rule enables access to objects in the
System.Math Namespace. Instead of typing System.Math.Round(100.05,0), type Round
(100.05,0).

The example below shows the Namespace references used in a standard Extensibility
Rule.

Properties Farmula

b @5 api

» @5 args

» 5 ERApI

» @5 Snippets

ule.Finance.CorporateBusinessRules

(Byval si As SessionInfo, ByVal globals As BRGlobals, ByVal api As FinanceRulesApi, ByVal arg

v
4 3

API Overview Guide 39

API Structure and Organization

Namespaces Defined

OneStream is a large and sophisticated software platform and consequently a great deal
of effort went into organizing the code base into a hierarchical set of Namespaces. This
section defines the Namespace hierarchy and explains the primary purpose of the code
libraries in each Namespace. It is important to understand structure and meaning of the
platform Namespaces because most APl methods accept and return objects defined
within specific Namespaces. By understanding the structure of the Namespace hierarchy,
developers can browse for objects using intelli-sense in the syntax editor.

Namespace Hierarchy

The hierarchy below denotes the platform Namespaces and the object libraries contained
within them. This hierarchy is explored from within the Business Rule syntax editor by
typing OneStream. and navigating through the intelli-sense popup lists. This technique
helps find objects to pass into an API function, objects returned from an API function, or
common helper classes available in the platform.

OneStream (Root Namespace)
OneStream.BusinessRule
OneStream.BusinessRule.Finance
OneStream.BusinessRule.Parser
OneStream.BusinessRule.Connector
OneStream.BusinessRule.ConditionalRule
OneStream.BusinessRule.DerivativeRule
OneStream.BusinessRule.DashboardDataSet
OneStream.BusinessRule.DashboardExtender
OneStream.BusinessRule.DashboardStringFunction
OneStream.BusinessRule.Extender
OneStream.Client

OneStream.Client.SharedUI
OneStream.Client.SharedUI.FinanceMsgStrings
OneStream.Client.SharedUI.FinanceUIStrings
OneStream.Client.SharedUI.GeneralMsgStrings
OneStream.Client.SharedUI.GeneralUIStrings
OneStream.Client.SharedUI.StageMsgStrings
OneStream.Client.SharedUI.StageUIStrings

OneStream.Client.SharedUI.StringResourceFileType

API Overview Guide 40

API Structure and Organization

OneStream.Client.SharedUI.StringResourceHelper
OneStream.Client.SharedUI.XFStrings
OneStream.Finance

OneStream.Finance.Engine
OneStream.Finance.Engine.DataApi
OneStream.Finance.Engine.EvalDataBufferDelegate
OneStream.Finance.Engine.FinanceRulesApi
OneStream.Finance.Engine.IAccountApi
OneStream.Finance.Engine.ICalcStatusApi
OneStream.Finance.Engine.IConsApi
OneStream.Finance.Engine.ICubesApi
OneStream.Finance.Engine.IDimensionsApi
OneStream.Finance.Engine.IEntityApi
OneStream.Finance.Engine.IFlowApi
OneStream.Finance.Engine.IFunctionsApi
OneStream.Finance.Engine.IFxRatesApi
OneStream.Finance.Engine.IMembersApi
OneStream.Finance.Engine.IPovApi
OneStream.Finance.Engine.IScenarioApi
OneStream.Finance.Engine.ITimeApi
OneStream.Finance.Engine.IUDApi
OneStream.Finance.Engine.IViewApi
OneStream.Finance.Engine.IWorkflowApi
OneStream.Stage

OneStream.Stage.Engine
OneStream.Stage.Engine.Parser
OneStream.Stage.Engine.ParserDimension
OneStream.Stage.Engine.TransformerDataCache
OneStream.Stage.Engine.Transformer
OneStream.Stage.Engine.TransformerDimension
OneStream.Stage.Engine.TransformRuleCache
OneStream.Shared

OneStream.Shared.Engine
OneStream.Shared.Engine.ExternalWcfClient
OneStream.Shared.Engine.TaskActivityStepWrapperItem
OneStream.Shared.Database

OneStream.Shared.Database.DbConnInfo

API Overview Guide

API Structure and Organization

OneStream.Shared.Common
OneStream.Shared.Common. (Various Constants, Helper Classes & Data Transfer Objects ‘DTO’)
OneStream.Shared.Wcf

OneStream.Shared.Wcf. (Various Constants & Data Transfer Objects ‘DTO’)

Microsoft Financial Calls

Financial calls are part of the Microsoft.VisualBasic namespace, and can be used to for
calculations such as:

» Depreciation
» Present and future values

Interest rates

Rates of return

« Payments

These functions are available to anyone with access to Business Rules. They can be
explored within the Business Rule syntax editor by typing Microsoft.VisualBasic.Financial
then navigating through the intelli-sense popup lists.

To view all methods from the Microsoft.Visual Basic Financial class used in a Business
Rule:

1. Navigate to the Business Rule Editor:
a. Inthe OneStream Software application, click the Application tab.
b. Under Tools, click Business Rules.

c. Expand the appropriate Business Rules category or click Search on the
toolbar.

2. Click the Formula tab.
3. Inthe editor window, type Microsoft.Visualbasic.Financial.

A list of methods displays.

API Overview Guide 42

API Structure and Organization

12 | Imports OneStream.Shared.Engine

13 Imports OneStream.Shared.Database
14 | Imports OneStream.Stage.Engine

15 Imports OneStream.Stage.Database
16 | Imports OneStream.Finance.Engine
17 | Imports OneStream.Finance.Database

-INamespace OneStream.BusinessRule.Extender.ATony
20 - Public Class MainClass

21 = Public Function Main(ByVal si As SessionInfo, ByVal globals As BRGlobals, ByVal api

22 Try
23 Select Case args.FunctionType

25 Case Iz = ExtenderFunctionType.Unknown

Dim mydatacell As DataCell = BRapi.Finance.Data.GetDataCellsUsingMe

28 api. LngMessage[mydatacell DataCellPk.GetMemberScript(api) + "

ecuteDataMgmtBusinessRuleStep
microsoft.VisualBasic.Financial.
End Select

Y B

Return Nothing

14 Fa¥rh av Az Fwvrantdian

e o e e L L e o B B b o H =

R e e v

fieldTokens.Add("xfGuid#:[Fieldl]: :NewGuid™)
fieldTokens.Add("xfText#:[Field2]")
fieldTokens.Add("xfInt#:[Field3]"™)

See Business Rules for more information.

In-Solution Development

In-solution development is the process of creating OneStream Business Rules to deliver
domain specific solutions. This means that all Business Rules are executed within the
application server process space. The code written is only executed on the application
servers where OneStream is deployed.

Developing within the application server environment enables solution developers to
focus on the business problem instead of common programming concerns. The platform
takes care of managing connections, moving data between application tiers, and load
balancing server activities.

API Overview Guide 43

- IsL

API Structure and Organization

In some cases, in-solution development is seen as a limitation because the developer is
restricted to coding within the application server tier. However, in most cases the
efficiency and quality gained by developing within the platform out ways any limitations
imposed by coding at the application server tier.

Custom Development

Custom development refers to stand alone application development that interacts with the
platform at the web server tier. OneStream provides a client tier API called from a custom
developed client application. The client APl is regularly used within the PowerShell script
to perform automation tasks.

Client API

The OneStream Client APl is intended to provide a set of methods that connect to the
OneStream environment, request data via a Cube View, and execute a Data
Management Sequence. At first glance, these three capabilities may seem limiting, but it
is important to realize that a Data Management Sequence can contain any combination of
Data Management Steps and these steps can consist of custom Business Rules. Client
side developers can create Data Management Sequences that execute Business Rules
to accomplish server side tasks. Developers can create sophisticated solutions that
combine in-solution Business Rule logic with client side custom solution logic.

Custom Web Development

The platform has the ability to display web pages within a custom Dashboard. This allows
completely custom web applications to surface within the OneStream solution.
OneStream can pass information about the user’'s POV and Workflow as URL
Parameters enabling the custom web application to act as part of an integrated solution.

With this capability, developers are free to create and incorporate any solution they can
imagine.

API Overview Guide 44

Using System Tools

Using System Tools

System Business Rules

System Extender Business Rules are used in coordination with Azure Server Sets for
elastic scalability at the Azure Database and Server Sets level. Server and eDTU scaling
can be accomplished manually or via System Business Rules. If System Business Rules
is selected as a Scaling Type, then OneStream will call a user-defined System Extender
Business Rule to determine if scaling is needed. The user is responsible for
implementing the scaling function and returning the proper scaling object to OneStream.
This can be accomplished by adding a System Extender Business Rule and assigning it
appropriately.

Under each Case statement, these rules and related Args and BRApis can be used to
check the current Server Set capacity, query metrics about a Server Set or Azure
Database and impact the volume of Server Sets or level of Azure Database deployed.

Refer to the Installation and Configuration Guide under Azure Database Connection
Settings and Server Sets for where to refer to these Business Rules. Example starting
point of empty System Extender Business Rule upon creation:

Namespace OneStream.BusinessRule.SystemExtender.ServerSet2
Public Class MainClass
Public Function Main(ByVal si As SessionInfo, ByVal globals As BRGlobals, ByVal api As Object, ByVal args As SystemExtenderfrgs) As Object
Try
Select Case args.FunctionType

Case Is = SystemExtenderFunctionType.Unknown
Case Is = SystemExtenderFunctionType.GetDesiredServerSetCapacity
Case Is = SystemExtenderFunctionType.GetDesiredElasticDatabasePoolCapacity
Case Is = SystemExtenderFunctionType.GetDesiredExternalServerSetCapacity
End Select
Return Nothing
Catch ex As Excepticn
Throw ErrorHandler.LlogWrite(si, Mew XFException(si, ex))
End Try
End Function

End Class
End Namespace

API Overview Guide 45

Using System Tools

Sample System Business Rule

Metrics data is passed to this function to help the user determine whether the server or
database needs to be scaled or not. Depending on what is being scaled, different metric
data is passed in. For server scaling, Environment metrics and Scale Set metrics are
passed in to help determine scaling. For database scaling, Environment metrics and SQL
Server Elastic Pool metrics are passed in to help determine scaling.

Select Case args.FunctionType
Case Is = SystemExtenderFunctionType.Unknown
Case Is = SystemExtenderFunctionType.GetDesiredScaleSetCapacity
Dim systemExtenderScaleSetResult As New SystemExtenderScaleSetResult
systemExtenderScaleSetResult.Capacity = args.ScaleSetArgs.CurrentScaleSetCapacity
If (args.ScaleSetArgs.ScaleSetMetricValues.AvgCPUUtilization > 5@) Then
systemExtenderScaleSetResult.Capacity = args.ScaleSetArgs.CurrentScaleSetCapacity + 1
End If
Return systemExtenderScaleSetResult
Case Is = SystemExtenderFunctionType.GetDesiredElasticDatabasePoolCapacity
Dim systemExtenderSQLServerElasticPoolResult As New SystemExtenderSQLServerElasticPoolResult
systemExtenderSQLServerElasticPoolResult.AzureElasticPoolDTU = args.SQLServerElasticPoolArgs.DatabaseAndEPoolDTU.AzureElasticPoolDTU
If (args.SQLServerElasticPoolArgs|.AzureElasticPoollevelMetricValues.DTUConsumptionPercent > 90)
systemExtendersQLServerElasticPoolResult.AzureElasticPoolDTU = 1600
End If
Return systemExtenderSQLServerElasticPoolResult

Case Is = SystemExtenderFunctionType.GetDesiredExternalScaleSetCapacity

End Select

Database

The Database screen allows System Administrators to view all of OneStream’s database
tables and provides tools for managing stored data and other information.

Tables

This gives read-only access to all data tables in the database and can be used for tasks
such as trying to debug issues without having access to the database, or deletion logging.

Tools

Database Tools allow System Administrators to manage the database.

Data Records

Enter a Member Filter in order to view data for the entire system.

API Overview Guide 46

Client API Listing

Client API Listing

This API provides a simple set of functions that have the ability to connect to OneStream’s
server, authenticate, execute OneStream Data Management Sequences, and perform
basic data retrieval.

Client APl Object Hierarchy

e OneStreamClientAPI
° LogonlInfo

o Type: Logoninfo

o 8l

° Type: Sessioninfo

o Authentication
° Logon
o Parameters:
o string webServerUrl
o string userName
o string password
o XFClientAuthenticationType clientAuthenticationType

o Return Value:

API Overview Guide 47

Client API Listing

o Logoninfo

o Logoff
° Parameters:
° None
° Return Value:

° None

o OpenApplication
o Parameters:
o string application
o Return Value:

o Logoninfo

o LogonAndOpenApplication
o Parameters:
o string webServerUrl
o string username
° string password

o string application

API Overview Guide

48

Client API Listing

o XFClientAuthenticationType clientAuthenticationType

o Return Value:

° LogonlInfo

° EncryptPassword
o Parameters:
o string clearTextPassword
o XFClientAuthenticationType clientAuthenticationType
° Return Value:

° string

« DataManagement
o ExecuteSequence
o Parameters:
o string sequenceName
o string customSubstVarsAsCommaSeparatedPairs
° Return Value:

o DataMgmtResult

o ExecuteStep

API Overview Guide

49

Client API Listing

o Parameters:

o string dataMgmtGroupName

o string stepName

o string customSubstVarsAsCommaSeparatedPairs
° Return Value:

o DataMgmtResult

» DataProvider
o GetAdoDataSetForCubeViewCommand

o Parameters:
o string cubeViewName
° bool dataTablePerCubeViewRow
o CubeViewDataTableOptions dataTableOptions
o string resultDataTableName
o Dictionary<string, string> customSubstVars
° bool throwExceptionOnError

° Return Value:

o DataSet

o GetAdoDataSetForSqlCommand

API Overview Guide 50

Client API Listing

o Parameters:

[}

[}

DbLocation dbLocation

string xfExternalDBConnectionName

string sqlQuery

string resultDataTableName
Dictionary<string, string> customSubstVars

bool throwExceptionOnError

o Return Value:

e}

DataSet

o GetAdoDataSetForMethodCommand

o Parameters:

o

[}

XFCommandMethodTypeld xfCommandMethodType
string methodQuery

string resultDataTableName

Dictionary<string, string> customSubstVars

bool throwExceptionOnError

o Return Value:

e}

DataSet

API Overview Guide 51

Client API Listing

PowerShell

PowerShell is an object-oriented programming language and interactive command line
shell for Microsoft Windows. It was designed to automate system tasks, such as batch
processing, and create systems management tools for commonly implemented
processes. PowerShell includes more than 130 standard command line tools for
functions that formerly required users to create scripts in VB, VBScript or C#.

PowerShell offers a variety of ways to automate tasks which include:

Cmdlets
Very small .NET classes that appear as system commands

Scripts
Combinations of cmdlets and associated logic

Executables
Standalone tools

Instantiation of standard .NET classes

PowerShell integrates with the .NET environment and can also be embedded in other
applications. Over one hundred cmdlets are included and can be used separately or
combined with others to automate more complex tasks. Users can also create and share
cmdlets.

PowerShell is built into Windows Operating Systems, where it is included as an optionally
installed feature. In addition, the Windows Task Scheduler can be used to automate
PowerShell script execution.

Using PowerShell Script Editor

To run PowerShell on Windows, Click left lower corner Windows icon start typing
PowerShell and open to begin.

There are two programs used to interact with PowerShell.

Windows PowerShell ISE

This is the integrated scripting environment or Script Editor. The editor allows users to
type PowerShell commands as well as edit and run PowerShell script files which are text
files with a ps7 extension.

API Overview Guide 52

Client API Listing

Windows PowerShell

This program is a command line execution tool that looks like a DOS prompt. It allows a
user to run a command or a script file, but it does not perform editing/creating scripts as
well.

Configuring PowerShell to use the OneStream Client API

Before PowerShell can be used to interact with the OneStream client API, three
configuration steps must be completed on each machine used for PowerShell script
execution. First, execute a PowerShell command enabling the execution of unsigned
scripts. Second, create or alter the PowerShell execution and IDE configuration files, so
the script engine understands how to use the .Net Framework v4.0Finally, OneStream
Client APl must be installed on each machine executing PowerShell scripts.

Allowing Execution of Unsigned Scripts
The first time this runs, the following line needs to run in a PowerShell command prompt.
This will allow PowerShell to run unsigned scripts created on the local computer.

set-executionpolicy remotesigned

Configuration for .Net Framework v.4.0

In order to use the OneStreamClientApi with PowerShell, PowerShell needs to be
configured to use the .NET Framework v4.0. In order to do this, modify or create two
configuration files if they do not already exist.

Configuration File Folder
C:\Windows\System32\WindowsPowerShell\v1.0

File 1 (Config for Execution)
powershell.exe.config

File 2 (Config for IDE)
powershell_ise.exe.config

Required File Contents (Must be added to each configuration file)

API Overview Guide 53

Client API Listing

<?xml version="1.0"7>
<configuration>
<startup useLegacyV2RuntimeActivationPolicy="true">
<supportedRuntime version="v4.0.30319"/>
<supportedRuntime version="v2.0.50727"/>
</startup>
</configuration>

Refer to the following web resources for more information on this process.

http://stackoverflow.com/questions/2094694/how-can-i-run-powershell-with-the-net-4-
runtime http://tfl09.blogspot.com/2010/08/using-newer-versions-of-net-with.html.

Install OneStream Client API
The Client API Installation is used by PowerShell scripts to interact with the OneStream
server.

Learning PowerShell

Microsoft provides extensive resources to help IT professionals get the most out of
PowerShell.

Refer to the following web resource in order to learn more about scripting with
PowerShell. http://technet.microsoft.com/en-us/scriptcenter/powershell.aspx

Using OneStream’s Client APl in a PowerShell Script

OneStream provides a client APl (OneStreamClientApi) specifically designed to enable
PowerShell scripts to call a OneStream function. This APl exposes functions for
authentication and Data Management. Over time, OneStream expanded the number of
functions exposed to this API. The Client APl component is installed as part of the
OneStreamClientAPi.msi.

API Overview Guide 54

http://stackoverflow.com/questions/2094694/how-can-i-run-powershell-with-the-net-4-runtime
http://stackoverflow.com/questions/2094694/how-can-i-run-powershell-with-the-net-4-runtime
http://tfl09.blogspot.com/2010/08/using-newer-versions-of-net-with.html
http://technet.microsoft.com/en-us/scriptcenter/powershell.aspx

Event Listing

Event Listing

Event Handler Business Rules

WCF Event Handler

This allows direct interaction with the Microsoft Windows Communication Foundation
which means it listens to communication between the client and the web server. The rule
will intercept the communication, analyze it, and if certain criteria is met, it will run its logic.
This is quite flexible and has a variety of uses such as creating, reading, deleting, and
updating different types of objects in the system for users in a group or Transformation
Rule changes. For example, a rule can be created to e-mail an auditor about every
metadata change as it happens.

Transformation Event Handler
This can be run at various points from Import through Load. Available operations:

StartParseAndTransForm
InitializeTransFormer
ParseSourceData
LoadDataCacheFromDB
ProcessDerivativeRules
ProcessTransformationRules
DeleteData
DeleteRuleHistory
WriteTransFormedData
SummarizeTransFormedData
CreateRuleHistory
EndParseAndTransForm

FinalizeParseAndTransForm

API Overview Guide 55

Event Listing

StartRetransForm
EndRetransForm
FinalizeRetransForm
StartClearData
EndClearData
FinalizeClearData
StartValidateTransForm
ValidateDimension
EndValidateTransForm
FinalizeValidateTransForm
StartValidatelntersect
EndValidatelntersect
FinalizeValidatelntersect
LoadIntersect
StartLoadIntersect
EndLoadIntersect

FinalizeLoadIntersect

Journals Event Handler
This can be run before, during, or after a Journal operation such as Submission,
Approval, or Post. Available operations:

SubmitJournal
Approvedournal
RejectJournal

PostJournal

API Overview Guide

Event Listing

UnpostJournal
StartUpdateJournalWorkflow
EndUpdateJournalWorkflow
FinalizeUpdateJournalWorkflow

Save Data Event Handler
This is run in order to track all save events in an application.

Forms Event Handler
This can be run before, during, or after an operation such as Form Save. Available
operations:

SaveForm

CompleteForm

RevertForm
StartUpdateFormWorkflow
EndUpdateFormWorkflow
FinalizeUpdateFormWorkflow

Data Quality Event Handler
This can be run before, during, or after data quality events like Confirmation and
Certification. Available operations:

StartProcessCube
Calculate

Translate
Consolidate
EndProcessCube
FinalizeProcessCube
PreparelCMatch
StartiICMatch

API Overview Guide

57

Event Listing

PreparelCMatchData
EndICMatch

StartConfirm

EndConfirm
FinalizeConfirm
SaveQuestionResponse
StartSetQuestionairreState
SaveQuestionairreState
EndSetQuestionairreState
StartSetCertifyState
SaveCertifyState
EndSetCertifyState
FinalizeSetCertifyState

Data Management Event Handler
This can be run before or after a Data Management Sequence or Step runs. Available
operations:

StartSequence
ExecuteStep
EndSequence

Workflow Event Handler
This can be run before or after a Workflow execution step. Available operations:

UpdateWorkflowStatus
WorkflowLock
WorkflowUnlock

API Overview Guide

Event Listing

Event Firing Sequences

OneStream fires a series of events when completing tasks via Event Handler Business
Rules. The example below explains how to read the table which provides the firing
sequence when running a specific task.

Script Type which
Executed Task correlates with the
Event Handler

Business Rule Type

cf# Event Listing - ClearData

StartSequence DataManagement

Is Before Event: False Can Cancel: False Number of Inputs: 2

Input Name

args inputs(0). System Collections Generic Dictionary'2[[System Guid, mscorlib, Version=4.0.0.0, Culture=neutral,
args.inputs(1). OneStre Shared Wef TaskActivit

Clear Cube Data

Iz Before Event: Fake Can Cancel: Fake Number of Inputs: 2
Inpui Name
arze inputs(0). Systam C Ganeric D - [[Systam Guid, mecarlib, Version=4.0.0.0, Culture=nentral,
arzs.inputsi1). O Shared Wef TaskActivi
Is Before Eveni: Trae Can Cancel: Fake Number of Inputs: 2
Inpui Name
args inputs(0). O Financa Engina Datahg:
args.inputs(1]. OneS Shared Wef Taskh ctivityT
Iz Before Event: True Can Cancel: True Number of Inputs: 0
Inpui Name
argz.inputs(0). SAVE DATA EVENT I§ USED FOR DEBUG ONLY
pdateWorkflowStatus ‘Workflow
Iz Before Event: Truoe Can Cancel: True Number of Inputs: 7
Input Name

argz.inputs(0). OneStream Shared Wef WorkflowInfo
arge.inputs(l). OnaStream Shared Commeon StapClassificationTypes
args.inputs(2). OneStream Shared Common WorkflowStatusTypes
args.inputs(3). System String

arge.inputs(4). System String

args.inputs(3). System String

args.inputs(). System Guid

pdateWorkflowStatus ‘Workflow
Is Before Event: Fake Can Cancel: True Number of Inputs: 7
Input Name

args inputs((). OneStream Shared Wef Workflowlnfo
args inputs(1). OneStream Shared Common StapClassificationTypes
arzs inputs(2). OneStream Shared Common WorkflowStatus Types

API Overview Guide

59

Event Listing

pdateWorkflowStatus ‘Workflow
Is Before Event: Fake Can Cancel: True Number of Inputs: 7
Input Name

arge inputs(3). System String
arge.inputs(4). System String
args.inputs(3). Svstem String
arge.inputs(6). System Guid

pdateWorkflowStatus ‘Workflow
Is Before Event: True Can Cancel: True Number of Inputs: 7
Input Name

arge.inputs{0). OnaStream Shared Wef WorkflowInfo
args.inputs(1). OnaStream Shared Common StepClassificationTypes
arge inputs(2). OnaStream Shared Commaon WorkflowStatusTypes
arge.inputs(3). System String

args.inputs(4). Svstem String

args.inputs(3). System String

args.imputs(f). System. Guid

pdateWorkflowStatus ‘Workflow
Iz Before Event: Fake Can Cancel: Truoe Number of Inputs: 7
Input Name

args.inputs(0). OnaStream. Shared Wef WorkflowInfo
arge.inputs(1). OnaStream Shared Common StepClassificationTypes

Shared. Common| Types

args.inputs(2). O
arge.imputs(3). Svstem String
arge.inputs(4). System String
args.imputs(3). System String
arge inputs(f). System Guid

[ExecuteStep DataManagement
Is Before Event: Fake Can Cancel: Fake Number of Inputs: 2
Input Name

5 Financa Engina DatahigmtStephiztadatal:

args.inputs(0). O

Iz Before Event: Fale Can Cancel: Fake Number of Inputs: 2
Input Name
arge.inpats(1). O Sharad Wef TazkA
Iz Before Event: Falee Can Cancel: Fake Number of Inputs: 2
Input Name
arge.inputs((). System Collections Genaric Di " 2[[Svstem.Guid, mecorlib, Version=4.0.0.0, Culture=neutral,
arzz.inputs(1). O Shared. Wef Tazk.

API Overview Guide

60

Event Listing

Clear Stage Data

Lz Before Event: Falke Can Cancel: Fake Number of Inputs: 2
Input Name
arge.inputs(0). System.Collections Generic Dicti " 2[[System Guid, mecorlib, Version=4.0.0.0, Culture=neutral,
args inputs(1). O Sharad Wef TaskA
Iz Before Event: True Can Cancel: Fake Number of Inputs: 2
Input Name
arzs.inputsi0). O Financa Engine DataMg
args.inputs(1). OneSi Shared Wef TaskActivityT
SaveCubeData SaveData
Iz Before Event: True Can Cancel: True Number of Inputs: 0
Input Name
args.inputs(0). SAVE DATA EVENT IS USED FOR DEBUG ONLY
pdateWorkflowStatus ‘Workflow
Iz Before Event: True Can Cancel: True Number of Inputs: 7
Input Name

argz.inputs(0). OneStream Shared Wef WorkflowInfo
argz.inputs(1). OneStream Shared Common StepClassificationTypes
arge.inputs(2). OneStream Shared Common WorkflowStatusTypes
arze inputs(3). System String

args.imputs(4). Svstem String

args.inputs(3). System.String

args.inputs(6). System. Guid

pdateWorkflowStatus ‘Workflow
Iz Before Event: Fake Can Cancel: True Number of Inputs: 7
Input Name

arzs. inputs(()). OneStream Shared Wef Workflowlnfo
arzs. inputs(1). OneStream Shared Common StapClassificationTypes
args. inputs(2). OneStream Shared Common WorkflowStatus Types

API Overview Guide

61

Event Listing

pdateWorkflowStatus ‘Workflow
Iz Before Event: False Can Cancel: Trae Number of Inputs: 7
Input Name

args.inputs(3). System. String
arge.inputs(4). System String
argz.inputs(3). System String
argz.inputs(6). System. Guid

pdateWorkflowStatus ‘Workflow
Iz Before Event: Trae Can Cancel: True Number of Inputs: 7
Input Name

arge.imputs(0). OnaStream Shared Wef WorkflowInfo
argz.inputs(1). OneStream Shared Common StepClassificationTypes

argz.inputs(2). O Shared. Common” Types
arge.inputs(3). System String

args.inputs(4). System String

arge.inputs(3). System String

args.inputs(§). System Guid

pdateWorkflowStatus ‘Workflow
Iz Before Event: False Can Cancel: Trae Number of Inputs: 7
Input Name

argz.inputs(0). OneStream Shared Wef WorkflowInfo
arge.inputs(1). OnaStream Shared. Common StapClazzificationTypes
argz.inputs(2). OneStream Shared Common WorkflowStatusTypes
argz.inputs(3). System. String

arge.inputs(4). System String

args.inputs(5). System. String

arge.inputs(f). System Gud

[ExecuteStep DataManagement
Is Before Event: False Can Cancel: Fake Number of Inputs: 2
Imput Name

5 Financa Engine DatahlgmiStephiatadatal:

args.inputs(0). O 5

Iz Before Eveni: False Can Cancel: Fake Number of Inputs: 2
Inpui Name
args inputs(1). O Sharad Wef TazkA

Iz Before Event: Falke Can Cancel: Fake Number of Inputs: 2
Input Name

arzs inguts(0). System Collactions Generic Dictionary” 2[[System Guid, mscorlib, Version=4.0.0.0, Culturs=neutral,
arzs inputs(1). OnsStream Shared Wef Tack ActivityTtam

API Overview Guide

62

Event Listing

Execute Data Management

StartSequence DataManagement
Is Before Event: False Can Cancel: Falke Number of Inputs: 1
Input Name
args. inputs(0). System Collections Generic Dictionary’ 2[[System Guid, mscorlib, Version=4.0.0.0, Culture=neutral,
args inputs(1). OneStream Shared Wef TaskA ctivityTtem
Iz Before Event: True Can Cancel: Fake Number of Inputs: 2
Input Name
arge inputs(0). O Finance Engine DataMe
args inputs(1). Onas Shared Wef TaskActivity
Iz Before Event: False Can Cancel: Fake Number of Inputs: 2
Input Name
arze inputs(0). O Financa Engina DataMg
args inputs(1). One$ Shared Wef TaskActivity]
Lz Before Event: False Can Cancel: Fake Number of Inputs: 1
Input Name
args.inputs(0). System Collections Generic Dictionary’ 2[[System Guid, mecorlib, Version=4.0.0.0, Culture=neutral,
argz.anputs(1). O Shared Wef TazkA

Import Data Connection

pdateWorkflowStatus ‘Workflow
I Before Event: True Can Cancel: True Number of Inputs: 7
Input Name
arzs inputs(0). OneStream Shared Wef Workflowlnfo
arzs inputs(1). O Shared Common StapClassificationTypes

args.inputs(2). OneStream Shared. Common WorkflowStatusTypes
arge inputs(3). System String

argz.inputs(4). System String

args.inputs(5). System String

arge inputs(6). Svstem Guid

pdateWorkflowStatus ‘Workflow
Is Before Event: Fake Can Cancel: True Number of Inputs: 7
Input Name

argz.inputs(0). OneStream. Shared. Wef WorkflowInfo
args inputs(1). OnaStream Sharad Common StepClassificationTypes

argz.inputs(2). O Shared. Common.” Types
args.inputs(3). System String
arge inputs(4). Svstem String
args.inputs(5). System String
arge inputs(6). System Gmd

SaveCubeData SaveData
Is Before Event: Trae Can Cancel: True Number of Inputs: 0
Input Name

argz inputs(0). SAVE DATA EVENT IS USED FOR DEBUG ONLY

1

]
|-
5
&
A
T
2
-

Transformation
L= Before Event: Trme Can Cancel: Fake Number of Inputa: §

Input Name

args.inputs(0). One$ Shared. Wef LoadCubePr: Inf:
arge.inputs(1). OnaStream Shared Wef WorkflowUnitPk
argz.inputs(2). System Boolean

args.inputs(3). OnaStream Shared Wef LoadDataMode

API Overview Guide

63

Event Listing

Iz Before Event: True Can Cancel: Fake Number of Inputs: 5
Input Name
args.inputs(4). System. Guid

Iz Before Fvent: Fake Can Cancel: Fake Number of Inputs: 5
Imput Name

argz.inputs(0). On=Stream Shared Wef LoadCubeProces:Info
argz.inputs(1). OneStream Shared Wef WorkflowUmitPk
args.inputs(2). System Boclean

args inputs(3). OneStream Shared Wef LoadDatzModa
args.inputsi4). System.Guid

pdateWorkflowStatus ‘Workflow
It Before Event: True Can Cancel: True Number of Inputs: 7
Input Name

args. inputs(0). OneStream Shared Wef WorkflowInfo
args. inputs(1). OneStream Shared Common StepClassificationTypes

args.inputs(2). O Shared Common.’ Types
arge.imputs(3). System String
args.inputs(4). System. 3ring
arzs.inputs(5). System. String
arzs inputs(f). System Guid

pdateWorkflowStatus ‘Workflow
Iz Before Event: Fale Can Cancel: Trae Number of Inputs: 7
Input Name

argz.inputs(0). OneStream.Shared Wef WorkflowInfo
args.inputs(1). OneStream Shared Common StepClassificationTypes
args inputs(2). OnaStream Shared Common WarkflowStatusTypes
args.inputs(3). System.String

argz.inputs(4). System String

arge.inputs(3). System. Bring

pdateWorkflowStatus Workflow
Is Before Fvent: False Can Cancel: True Number of Inputs: 7
Input Name
arzs. inputs(6). System Guid
Is Before Event: Fakse Can Cancel: Fake Number of Inputs: &
Input Name

args inputs(0). OneStream Shared Wef LozdCubeProcessInfo
args.inputs(l). OneStream. Shared Wef WorkflowUnitPk
args.inputs(2). System Boolean

args. imputs(3). OneStream Shared Wef LoadDatalode
args.inputs(4). System. Guid

API Overview Guide

64

Event Listing

Import Excel File

StartParseAndTransform Transformation
1s Before Event: Fake Can Cancel: Fake Number of Inputs: 4
Input Name
arzz inputs(0). O Stage Engine T

arge.inputs(1). Svstem String
argz.inputs(2). OneStream Shared Common TransformLoadMethodTypes
arge inputs(3). System. Guid

[InitializeTransformer Transformation
1= Before Event: True Cam Cancel: True Number of Inputz: 4
Tnput Name
argz.inputsi0). On=3 Stage.Engine T

args.inputs(l). System String
arge inputs(2). O Shared Common Ti dMethodTypes

arge.inputs(3). Svstem. Guid

InitializeTransformer Transformation
1z Before Event: Fake Can Cancel: True Number of Inputs: 4
Input Name
arzz inputs(0). OnaS Stage Engine T

arge.inputs(1). Svstem. String
argz.inputs(2). OneStream Shared Common TransformLoadMethodTypes
arge inputs(3). System. Guid

[ParseSourceData Transformation
1z Before Event: True Can Cancel: Fake Number of Inputz: 4
Tnput Name
argz.inputsi0). On=3 Stage Engine.T:

argz.inputs(1). System String
arge inputs(2). OnaStream Shared Common TransformLoadMethodTypes
arge.inputs(3). Svstem. Guid

API Overview Guide

65

Event Listing

[InitializeExcelRangeLayout Transformation
Iz Before Event: True Can Cancel: Falze Number of Inputs: 2
Input Name
args.inputs((). OnaStream Stage Engine Parser
argz.inputs(1). O Shared Enzine ontent
[InitializeExcelRangeLayout Transformation

Ls Before Event: Fake Can Cancel: Fake Number of Inputs: 3
Input Name
arge.inputs(0). OnaStream.Stage Engine Parser
args.inputs(1). OnaS Shared Engine. StageRanzeContant

[ParseSourceData Transformation

1z Before Event: Fake Can Cancel: Faka Number of Inputs: 4
Input Name
arzz.inputs(0). Ons=S Stage Engine T

arzs inputs(1). Systam String

arge.inputs(2). O Shared Common T dMethodTypes
arge inputs(3). System Guid
rocessDerivedRules Transformation
1z Before Event: Trua Cam Camcel: Fake Number of Tnputs: 4
Tnput Name
args. inguts(l). OnsS Stage Engine T

arge.inputs(l). System String
args.inputs(2). OneStream Shared Common TransformLoadMethod Types
arge.inputs(3). System Guid

rocessDerivedRules Transformation
Is Before Event: Fake Can Cancel: Falze Number of Inputs: 4
Input Name
args.inputs(0). OnaS Stape Engine T

arge.inputs(l). System String
args.inputs(2). OneStream Shared Common TransformLoadMethod Types

API Overview Guide

Event Listing

[ProcessDerivedRules Transformation
Iz Before Event: Fake Can Cancal: Fake Number of Inputs: 4

Imput Name
arge.inputs(3). System Guid

[ProcessTransformRules Transformation
Iz Before Event: True Can Cancel: Fake Number of Inputa: 4

Imput Name

arzs.inputs(0). OnaS Stage Engine T

args.inputs(1). System String
args.inputs(2). O Shared. Common. T diethodTypes
arge.inputs(3). System Guid
[ProcessTransformRules Transformation
Is Before Event: Fake Can Cancel: Fake Number of Inputs: 4

Input Name

args. inputs(0). OneSi Stage Engine.T:
arge.inputs(1). System Strng

argz.inputs(2). OneStream Shared Common TransformLoadMethod Types
arge.imputs(3). System Guid

Iz Before Event: Trae Can Cancel: Fake Number of Inputs: 4
Inpui Name
arge.imputs(0). O Stape Enzime T
arge.inputs(1). System String
arge inputs(2). O Shared. Common T dMethodTypes

arzs inputs(3). System Guid

[DeleteData Transformation
Ia Before Event: Fake Can Cancel: Fake Number of Inputa: 4
Input Name
;rgg_inpug(ﬂ)_ OnaSf Staga Engme.T.

argz.inputs(l). System. String

API Overview Guide

67

Event Listing

[DeleteData Transformation
Iz Before Event: Fake Can Cancel: Fake Number of Inputs: 4
Input Name

arzs. inputs(2). OneStream Shared Comumon TransformLoadMethodTypes
args. inputs(3). Systam Guid

[DeleteRuleHistory Transformation
Is Before Event: True Can Cancel: Fake Number of Inputz: 4
Input Name

5 Stage Engina T

args.inputs((). O
args.imputs(1). System String
argz.inputs(2). O Shared Common T dMethodTypes

args.imputs(3). Svstem. Guid

[DeleteRuleHistory Transformation
1s Before Fvent: False Can Caneel: False Number of Inputs: 4
Input Name
args.imputs(0). O Stage Engine. T

args. inputs(1). System String
args. inputs(2). OneStream Shared Common TransformLoadMethodTypes
arzs. inputs(3). System Guid

WriteTransformedData Transformation
Iz Before Event: True Can Cancel: Fale Number of Inputa; 4
Input Name
args.inputs(0). OneS Stage Engine T

args inputs(1). System String
arzs.inputs(2). O Sharad Common.T: dMathodTypes

args inputs(3). System Guid

WriteTransformedData Transformation
I Before Event: Fake Can Cancel: Fake Number of Inputs: 4
Input Name
arzs inputs((). O Stage Engime T

API Overview Guide

68

Event Listing

teTransformedData

ransformat
L Before Event: Fake Can Camcel: Fake Number of Inputz: 4

Input Name

args.imputs(l). System.String

arge.inputs(2). OnaStream Shared Common TransformLoadMethodTypes
args.imputs(3). System. Guid

SummarizeTransformedData Transformation

Iz Before Event: True Can Cancel: Falee Number of Inputs: 4
Input Name
args.imputs(0). O Stage Engine. T

arge.inputs(l). System String
arge.inputs(2). OnaStream Shared Common TransformL oadMethedTypes
args.imputs(3). System. Guid

SummarizeTransformedData Transformation

Iz Before Event: False Can Cancel: Falee Number of Inputs: 4
Input Name
args.imputs(0). O Stage Engine. T

arge.inputs(l). System String
arge inputs(2). OnaStream Shared Common TransformLoadMethodTypes
arge.imputs(3). System. Guid

CreateRuleHistory Transformation

Iz Before Event: True Can Cancel: Falze Number of Inputs: 4
Input Name
args.imputs(0]. O Stage Enzine. T

argz.inputs(l). System String
arge inputs(2). OnaStream Shared Common TransformLoadMethodTypes
arge.imputs(3). System. Guid

CreateRuleHistory Transformation

I; Before Event: False Can Cancel: False Number of Inputs: 4

Input Name

API Overview Guide

69

Event Listing

“reateRuleHistory Transformation

Iz Before Event: Fake Can Cancel: Fale Number of Inputs: 4
Input Name
args.inputs(0). OnaS Stage Engine.T:

arge.imputs(1). Svstem String
args.inputs(2). OnaStream Shared Common TransformLoadMethodTypes
arge.amputs(3). Svstem Gumd

[EndParseAndTransform Transformation
Is Before Event: Fake Can Cancel: Fake Number of Inputs: 4
Input Name
argz.inputs(0). O Stage.Engine.T;

args.inputs(1). System String
args.inputs(2). O Shared Common. Tt dilethodTypes

args.inputs(3). System Guid

pdateWorkflowStatus Workflow

Is Before Event: True Can Cancel: Trae Number of Inputs: 7

Input Name

argz.inputs(0). On=Stream Shared Wef WorkflowInfo
arge.inputs(1). OmeStream.Shared Common StapClaszificationTypes
args.inputs(2). OnaStream Shared Common WorkflowStatusTypes
arge.imputs(3). Svstem String

args.inputs(4). System String

args inputs(3). System String
args.inputs(6). System Guid

pdateWorkflowStatus Workflow

I: Before Event: Falke Can Cancel: True Number of Inputs: 7

Input Name

args.inputs(0). OneStream Shared Wef WorkflowInfo
arge.imputs(1). OneStream.Shared Common StapClaszsificationTypes
args.inputs(2). OneStream Shared. Common WorkflowStatusTypes
arge.inputs(3). System String

pdateWorkflowStatus ‘Workflow
Is Before Event: Fake Can Cancel: True Number of Inputs: 7
Input Name

arge.inputs(4). System String
arge.inputs(3). System. String
args.inputs(f). System Guid

[FinalizeParseAnd Transfo Transformati

Is Before Event: Fake Can Cancel: Fake Number of Inputs: 4
Input Name
arzs inputs(0). O Stage Engma T

arge.inputs(1). System String

arge.inputs(2). O Shared Common T dMethodTypes

args.inputs(3). System Guid

API Overview Guide

70

Event Listing

Import Text File

StartParseAndTransform Transformation
Iz Before Event: Fake Can Cancel: Fake Number of Inputs: 4
Input Name
arzs inputs(). O Stage Engme T

arge.inputs(1). System String
args.inputs(2). OnaStream Shared Common TransformLoadMethodTypes
args.inputs(3). System Guid

[InifializeTransformer Transformation
I Before Event: True Can Cancel: True Number of Inputs: 4
Input Name
arge.imputs(0). O Stage Engine. T)

argz.inputs(l). System.String
args.inputs(2). OnaStream Shared Common TransformLoadMethodTypes
args.inputs(3). System Guid

[InifializeTransformer Transformation
1= Before Event: Fake Can Cancel: True Number of Inputs: 4
Input Name
arge.imputs(0). O Stage Engine. T)

args.inputs(1). System String
args.inputs(2). OnsStream Shared Common TransformLoadMethodTypes
args inputs(3). System Guid

[ParseSourceData Transformation
1= Before Event: True Can Cancel: Fake Number of Inputs: 4
Input Name
arge.imputs(0). O Stage Engine. T,

args.inputs(1). System String
args.inputs(2). OnsStream Shared Common TransformLoadMethodTypes
arzs inputs(3). System Guid

API Overview Guide

71

Event Listing

[ParseSourceData Transformation
Iz Before Event: False Can Cancel: Fake Number of Inputs: 4
Input Name
args.inputs(0). O Stage Engine. T:

args.inputs(1). System String
args.inputs(2). OnaStream Shared Common. TransformL oadMethod Types
args.inputs(3). System Guid

[ProcessDerivedRules Transformation
Iz Before Event: True Can Cancel: Fale Number of Inputs: 4
Input Name
args.inputs(0). OneSi Stage Engine. T

args.inputs(1). System String
args inputs(2). OneStream Shared Common TransformloadMethod Types
args.inputs(3). System. Guid

[ProcessDerivedRules Transformation
s Before Event: Fake Can Cancel: Fake Number of Inputs: 4
Input Name

5 Stage Engme T:

args.inputs(0). O
arge.inputs(l). System String
arge.inputs(2). O Shared Common. T dMethodT

arzs inputs(3). System Guid

[ProcessTransformRules Transformation
1z Before Event: True Can Cancel: Fake Number of Inputs: 4
Input Name
argz. inputs(0). On Staze Engine T

args.inputs(1). System String
args.inputs(2). OneStream. Shared Common TransformLoadMethodTypes
args.inputs(3). System Guid

[ProcessTransformRules Transformation
1z Before Event: Fake Can Cancel: Fake Number of Inputs: 4
Imput Name
arzs.inputs(0). OnaS Stage Engina. T

args.inputs(1). Svstem String
argz.inputs(2). OnaStream Shared Common TransformLoadMethedTypes
args.inputs(3). Svstem. Guid

[DeleteData Transformation
Is Before Event: True Can Cancel: Fake Number of Inputs: 4
Input Name
args.inputs(). OnsS Stage Engine.T

args.inputs(1). System String

args.inputs(2). O Shared Common. T dhlethodTypes

arzs.inguts(3). System Guid

[DeleteData Transformation
Iz Before Event: Fake Can Cancel: Falke Number of Inputs: 4
Input Name

5 Stage Engme T

arge inputs(0). O
args.inputs(1). System String
args inputs(2). OnaStream Shared Common TransformLoadMethod Types
args.inputs(3). System. Guid

[DeleteRuleHistory Transformation
Is Before Event: True Can Cancel: False Number of Inputs: 4
Imput Name
arzs.inputs(0). Ons=S Stage Engine.T:

arzs inputs(1). Systam String
args.inputs(2). OnsStream Shared Common TransformLoadMethod Types
arzs inguts(3). Systam Guid

API Overview Guide

72

Event Listing

[DeleteRuleHistory Transformation
Is Before Event: Fake Can Cancel: False Number of Inputs: 4
Input Name
argz.inputs((). Ona$ Stage Engine. T

arzs inputs(1). Systam String
args inputs(2). OnsStream Shared Common TransformLoadMethod Types
arzs inputs(3). Systam Guid

WriteTransformedData Transformation
Is Before Event: True Can Cancel: Fake Number of Inputs: 4
Input Name
arzs.inputs((). OnsS Staze Engime T

arzs inputs(1). Systam String
args inputs(2). OnsStream Shared Common TransformLoadMethod Types
arzs inputs(3). Systam Guid

WriteTransformedData Transformation
I: Before Event: Fake Can Cancel: Fale Number of Inputs: 4
Input Name
argz.inputs((). Ona$ Stage Engine. T

arge.inputs(1). Svstem String
argz.inputs(2). OneStream Shared Commox TransformLoadMethod Types
arge.imputs(3). Svstem Gud

SummarizeTransformedData Transformation

L Before Event: True Can Cancel: Fake Number of Inputs: 4
Input Name
args.inputs(0). OneS Stage Engine.T

arge.inputs(1). Svstem String
argz.inputs(2). OneStream Shared Commox TransformLoadMethod Types
arge imputs(3). Svstem Guid

SummarizeTransformedData Transformation

Is Before Fvent: Fake Can Cancel: False Number of Tnputs: 4

Input Name

5 Stage Engme T

args inputs(0). O
argz.inputs(1). System. String
args.inputsi2). O Shared. Common. T diethodTypes

arzs inputs(3). System Guid

“reateRuleHistory Transformation

Is Before Event: Trone Can Cancel: Fake Number of Inputs: 4
Inpui Name
arge.inputs(0). O Stage Enzime T

arge imputs(1). Systam String
args.inputs(2). O Shared Common T dMathodTypes

arzs inputs(3). System Guid

“reateRuleHistory Transformation

Iz Before Eveni: Falke Can Cancel: Fake Number of Inputs: 4
Input Name
args.inputs(0). O Stage Engine.T;

arzs inputs(1). System String
args inputs(2). OneStream. Shared Common TransformLoadMethodTypes
arzs inputs(3). System Guid

[EndParseAndTransform Transformation

Is Before Event: Fake Can Cancel: Fake Number of Inputs: 4
Input Name
args.inputs(0). OnsS Stage Engine. T

arge.inputs(l). System String
argz.inputs(2). OneStream Shared Common TransformLoadMethodTypes
args.inputs(3). System Guid

API Overview Guide

73

Event Listing

pdateWorkflowStatus ‘Workflow
Is Before Event: Trae Can Cancel: True Number of Inputs: 7
Input Name

arge.inputs(0). OnaStream Shared Wef WorkflowInfo
argz.inputs(1). OneStream Shared Common StepClassificationTypes

args.inputs(2). O Shared. Common.” Types
arge.inputs(3). System String
args.inputs(4). System Siring
arge inputs(5). System String
args.inputs(6). System Guid

pdateWorkflowStatus Workflow
Is Before Event: Fake Can Cancel: True Number of Inputs: 7
Input Name

args.inputs(0). OneStream Shared Wef Workflowlnfo
arge.inputs(l). OnaStream Shared Common StapClaszificationTypes
args.inputs(2). OneStream Shared Common WorkflowStatusTypes
argz.inputs(3). System.String

arge inputs(4). System String

args.inputs(3). System String

arge.inputs(6). System Gmd

[FinalizeParseAndTransform Transformation

Iz Before Event: Fake Can Cancel: Fale Number of Inputs: 4

Input Name

5 Stage Engme.T;

argz inputs(0). O

args inputs(1). System String
args.inputs(2). O Shared Common T dMethod Types
arge inputs(3). System Guid

Process Form

“ompleteForm Forms

Is Before Event: True Can Cancel: Falke Number of Inputs: 4

Input Name
args.inputs((). OmeStream. Shared Wef HFFormEx
args inputs(1). System Boolean

arzs inputs(2). System Boolean

argz. inputs(3). O Shared Common’ Types
“ompleteForm Forms
Iz Before Event: Fake Can Cancel: Fake Number of Inputs: 4
Input Name

args.imputs((). OneStream Shared Wef XFFormEx

args.inputs(1). System Boclean

args.inputs(2). System Boolean

args inputs(3). OnaStream Shared Common WorkflowStatusTypes

“ompleteForm Forms

Is Before Event: True Can Cancel: Fale Number of Tnputs: 4

Input Name
args. inputs(]). OnaStream Shared Wef XFFormEx
args.inputs(1). System Boclean

args.inputs(2). System Boolean
args.inputs(3). OneStream Shared Common WorkflowStatusTypes

“ompleteForm Forms

I; Before Event: Fake Can Cancel: False Number of Inputs: 4

Input Name
args.inputs((). OneStream Shared Wef XFFormEx

args.inputs(1). System Boolean
args.inputs(2). Svstem Boclean
args.inputs(3). OneStream Shared Common WorkflowStatusTypes

API Overview Guide

Event Listing

riUpdateFormWorkflow Forms
Is Before Event: Fake Can Cancel: False Number of Inputs: 3
Input Name

arge inputs(ll). OnaStream Shared Wef InputF orm:Proces:Info
arge.inputs(1). OneStream Shared Wef WorkflowUnitPk
argz.mputs(2). Svstem Boolean

[EndUpdateFormWorkflow Forms
Iz Before Event: Fake Can Cancel: Fake Number of Inputs: 3
Input Name

arge.inputs(0). OnaStream Shared Wef InputF orm:Proces:Info
args.inputs(1). OnaStream Shared Wef WorkflowUnitPk
args.inputs(2). System Boclean

IpdateWorkiflowStatus ‘Workilow
Is Before Event: True Can Cancel: Trae Number of Inputs: 7
Input Name

argz.inputs(0). OneStream Shared Wef Workflowlnfo

arge inputs(1). OnaStream Shared Common StepClassificationTypes
arge.inputs(2). OneStream Shared. Common WorkflowStatusTypes
args.imputs(3). Svstem Siring

arge.inputs(4). System String

arge.imputs(3). Svstem Siring

arge.inputs(f). System Guid

JpdateWorkflowStatus Workflow
Iz Before Event: Fake Can Cancel: True Number of Inputs: 7
Input Name

arge.inputs(0). OmaStream Shared Wef WorkflowInfo
arge.inputs(1). OnaStream Shared Common StepClassificationTypes
args.imputs(2). O Shared. Common.” Typas
arge.inputs(3). System String

args.imputs(4). System String
arge.inputs(3). System String

IpdateWorkflowStatus Workflow
Is Before Event: False Can Cancel: True Number of Inputs: 7
Input Name

arge.imputs(f). System Gud

API Overview Guide

75

Event Listing

Process Journal

" 7
SubmitJournal
1z Before Event: True

Can Cancel: Fake

Journals
Number of Inputs: 2

Input Name

arge inputs(0). Svstem. Guid

arzs inguts(1). OneStream Shared Wef JournalEx

SubmitJournal
s Before Event: Fake

Can Cancel: Fake

Journals
Number of Inputs: 2

Input Name

arge inguts(D). System Guid

arge.inputs(1). OneStream Sharad Wef JournalEx

[FinalizeSubmitJournal
Iz Before Event: Fale

Can Cancel: Fake

Journals
Number of Inputs: 1

Input Name

arzs inguts(D). System Guid

pproveJournal
I Before Event: True

Can Cancel: Fake

Journals
Number of Inputs: 2

Input Name

arge inguts(D). System Guid

arge.inputs(1). OneStream Sharad Wef JournalEx

pproveJournal
Iz Before Event: Fake

Can Cancel: Fake

Journals
Number of Inputs: 2

Input Name

arzs inguts(D). System Guid

arge inguts(1). OneStream Shared Wef JournalEx

[FinalizeApproveJournal
Is Before Event: Fake

Can Cancel: Fake

Journals
Number of Inputs: 1

Input Name

arge inputs(0). Svstem. Guid

API Overview Guide

76

Event Listing

[PostJournal Journals
Ls Before Event: True Can Cancel: Fake Number of Inputs: 2
Input Name

args.inputs(0). System Guid
argz.inputs(l). OnsStream Shared Wef JournalEx

o
=
a
Q
=
&
=]
g

SaveData
I: Befors Event: True Can Cancel: True Number of Inputs: 0

Input Name

args inputs(0). SAVE DATA EVENT I§ USED FOR DEBUG ONLY

IpdateWorkflowStatus ‘Workflow
Is Before Event: True Can Cancel: Trae Number of Inputs: 7

Input Name

args.inputs(0). OneStream Shared Wef WorkflowInfo
argz.inputs(1). OnsStream. Shared. Common StapClaszificationTypes
args.inputs(2). OneStream Shared Common WorkflowStatusTypes
argz.inputs(3). System String
args.inputs(4). System String
argz.inputs(3). System. String
arge inputs(6). System Guid
JpdateWorkiflowStatus ‘Workflow
Ls Before Event: Falke Can Cancel: Trae Number of Inputs: 7

Input Name

args.inputs(0). OneStream Shared Wef WorkflowInfo
argz.inputs(1). OnsStream. Shared. Common StapClaszificationTypes
args.inputs(2). OneStream Shared Common WorkflowStatusTypes
argz.inputs(3). System String

args.inputs(4). System String

argz.inputs(3). System. String

arge inputs(§). System Guid

[PostJournal Journals
Iz Before Event: Falke Can Cancel: Falke Number of Inputs: 2

Input Name
arge.inputs(0). System Guid
arge.inputs(l). OneStream Shared Wef JournalEx

Iz Before Event: Falke Can Cancel: Falke Number of Inputs: 1
Input Name
args inputs(0). Systam Guid
StartUpdateJournalWorkflow Journals
Is Before Event: False Can Caneel: False Number of Inputs: 3
Input Name

argz.inputs(0). OneStream Shared Wef Inputfournal:ProcessInfo
arze inputs(1). OnaStream Shared Wof WorkflowlUnitPk
arge.inputs(2). System Boolean

[EndUpdateJournalWorkflow Journals

Iz Before Event: Fake Can Cancel: Fake Number of Inputz: 4

Input Name

args inputs(0). O Shared Wef Input]

args inputs(1). OneStream Shared Wef WorkflowUnitPk

args inputs(2). System Boolean

args inputs(3). O Shared Wef. dT: Workflow

JpdateWorkiflowStatus ‘Workflow

Iz Before Event: Truoe Can Cancel: True Number of Inputs: 7

Input Name

args inputs((l). OneStream Shared Wef Workflowlnfo

arzs inputs(1) O Shared Common StapClassification Types

argz.inputs(2). O Shared. Common.’ Types

args inputs(3). System String
args inputs(4). Systam String

API Overview Guide

7

Event Listing

pdateWorkflowStatus Workflow
Iz Before Event: True Can Cancel: Troe Number of Inputs: 7
Input Name

argz.imputs(3). System Sfring
args.inputs(6). System Guid

pdateWorkflowStatus Workflow
Iz Before Event: Fake Can Cancel: Troe Number of Inputs: 7
Inpat Name

args.inputs((). OmeStream. Shared Wef WorkflowInfo

args inputs(1). OneStream Shared Common StepClassificationTypes
args.inputs(2). OneStream Shared Common WorkflowStatusTypes
args inputs(3). System String

args.inputs(4). System String

args inputs(3). System String

args.inputs(6). System Guid

[FinalizeUpdateJournalWorkflow Journals
Iz Before Event: Fake Can Cancel: Falke Number of Inputs: 3
Input Name
argz.inputs(0). O Shared Wef Input]

args.inputs(1). OneStream Shared Wef WorkflowUnitPk
argz.inputs(2). Svstem Boclean

Process Workflow

StartValidateTransform Transformation
Is Before Event: Fake Can Cancel: Fake Number of Inputs: 4
Imput Name
args inputs(0). OnsStrsam Sharad Wef ValidationTransformationP In:

argz.inputs(1). OneStream Shared Wef WorkflowUnitPk
argz.inputs(2). System Boolean
arge inputs(3). System Guid

7alidateDimension Transformation
1z Before Event: True Can Cancel: Fake Number of Inputs: 5
Input Name

argz.inputs(0]. OneStream Shared Wef WorkflowUnitPk
arge.inputs(1). OneStream Shared Wef DimensionValidationInfo
args.inputs(2). System String

arge.imputs(3). System Gud

arge.inputs(4). System Guid

7alidateDimension Transformation
Is Before Event: Fake Can Cancel: Fake Number of Inputs: §
Imput Name
argz.inputs(0). OneStream Sharad Wef WorkflowUnitPk
args.inputs(1). OnsS Shared. Wef DimensionValidationl

argz.inputs(2). System. String
arge inputs(3). System Guid
args.inputs(4). System Guid

" LBeforeEvent: Trse CanCamcel Fabe Nwmberoflputs §
Input Name
args inputs(0). OneStream Shared Wef WorkflowUnitPk
ars. inputs(1]. OneStream, Shared Wef DimensionValidationk

arge.inputs(2). System String
arge.inputs(3). System Guid
args.inputs(4). System Guid

API Overview Guide

Event Listing

/alidateDimension Transformation
Iz Before Event: Fake Can Cancel: Fake Number of Inputs: 5
Tnput Name

args inputs(0). OnsStream, Shared Wef WorkflowUnitPk
Stream Shared Wef DimensionValidation]

args.inputs(1). O
arge.imputs(2). System String
arge.inputs(3). System Guid
args.inputs(4). System Guid

Iz Before Event: Troe Can Cancel: Fake Number of Inputs: §
Input Name
arzs.inputs(D). OnsStream Shared Wef WorkflowUnitPk
arzs.inputs(1). O Shared Wef DimensionValidati

arge.inputs(2). System String
argz.inputs(3). System Guid
argz.inputs(4). System. Guid

Iz Before Event: False Can Cancel: Fake Number of Inputs: §
Input Name
argz.inputs(0). OneStream Shared Wef WorkflowUnitPk
args.inputs(1]. O Shared. Wef Di ionVali

arge.inputs(2). System String
args.inputs(3). System Guid
argz.inputs(4). System Guid

Iz Before Event: Traoe Can Cancel: Fake Number of Inputs: 5
Input Name
args.inputs(0). OneStream Shared Wef WorkflowUnitPk
arge.imputs(1). O Shared. Wef D W

argz.inputs(2). System String
argz.inputs(3). System. Guid

/alidateDimension Transformation
1z Before Event: Trae Can Cancel: Fake Number of Inputs: 5
Input Name

arss inputs(4). System Guid

1z Before Event: Fale Can Cancel: Fale Number of Inputs: 5
Input Name
argz.inputs(0). OneStream Shared Wef WorkflowUnitPk
arzs inputs(1). O Sharad Wef Dh v

arzs inputs(2). System String
args inputs(3). System Guid
arzs inputs(4) System Guid

1z Before Event: Trae Can Cancel: Fale Number of Inputs: 5
Input Name
argz.inputs(0). OneStream Shared Wef WorkflowUnitPk
arzs inputs(1). O Sharad Wef Dh v

args.inputs(2). System. String
argz.inputs(3). System Guid
arzs inputs(4). System Guid

1z Before Event: Fale Can Cancel: Fale Number of Inputs: 5
Input Name
argz.inputs(0). OneStream Shared Wef WorkflowUnitPk
arzs inputs(1). O Sharad Wef Dh v

args.inputs(2). System. String
argz.inputs(3). System Guid
arzs inputs(4). System Guid

API Overview Guide

Event Listing

Iz Before Event: True Can Cancel: Fake Number of Inputs: 5
Input Name
arge.inputs((). OnaStream Shared Wef WorkflowUnitPk
argz.inputs(1). O Shared Wef.D: ionV i

arge inputs(2). System String
args.inputs(3). System Guid
args.inputs(4). System Gud

Iz Before Event: Fale Can Cancel: False Number of Inputs: &
Input Name
args.inputs(D). OnsStream Shared Wef Workflow UnitPk
args.inputs(1). O Shared Wef D: ionV i

args. inputs(2). System String
args. inputs(3). System Guid
arzs inputs(4). System Guid

Lz Before Event: True Can Cancel: Falze Number of Inputs: 5
Input Name
args.inputs(D). OnsStream Shared Wef Workflow UnitPk
args.inputs(1). O Shared Wef D ionV i

args.inputs(2). System String
args.inputs(3). Svstem Guid
arge.inputs(4). System Guid

Iz Before Event: Fake Can Cancel: Fake Number of Inputs: 5
Input Name
args.inputs((). OneStream Shared Wef WorkflowUnitPk
args.imputs(1). O Shared Wef D W

args.inputs(2). System String
args.inputs(3). System Gud

7alidateDimension Transformation
Is Befors Event: Fake Can Cancal: Fake Number of Inputs: §
Taput Name

arzs inputs(4). System Guid

Is Before Event: True Can Cancel: Fake Number of Inputs: 5
Input Name
arge inputs(0). OnaStream Shared Wef WorkflowUnitPk
args inputs(1). O Shared. Wef Di ionValidati

args.inputs(2). System String
arge.inputs(3). System Gmd
args.inputs(4). System Guid

L= Before Event: Fake Can Cancel: Fake Number of Inputs: 5
Input Name
args.inputs(0). OnaStream Shared Wef WorkflowUnitPk
argz.anputs(1). O Shared. Wef D W

args.inputs(2). System String
arge inputs(3). System Guid
argz.inputs(4). System. Guid

7alidateDimension Transformation
Is Before Event: Trme Can Cancel: Fake Number of Inputs: §
Input Name

args.inputs(0). OneStream Shared Wef WorkflowUnitPk

arge inputs(1). OnaStream Sharad Wef DimensionValidationInfo
argz.inputs(2). System String

args.inputs(3). System Guid

arge inputs(4). Svstem Guid

API Overview Guide

80

Event Listing

Iz Before Event: Fake Can Cancel: Fake Number of Inputs: 5§
Input Name
args.inputs(0). OneStream Shared Wef WorkflowUnitFk
args.inputs(1). One$ Shared WefDi jonValidationT.

arge.inputs(2). System String
arge.mputs(3). System Gmd
arge.inputs(4). System Guid

Iz Before Event: True Can Cancel: Fake Number of Inputs: §
Input Name
args.inputs(0). OneStream Shared Wef WorkflowUnitPk
args.inputs(1). One$ Shared WefDi jonValidationT.

args.imputs(2). System String
arge inputs(3). System Guid
arge.inputs(4). System Guid

Iz Before Event: Fake Can Cancel: Fake Number of Inputs: 5§
Input Name
args.inputs(0). OneStream Shared Wef WorkflowUnitPk
arge.inputs(1). OnaS Shared Wef Di ionValidationl:

args.inputs(2). Svstem String
arge.inputs(3). System Guid
args.imputs(4). System. Guid

Iz Before Event: True Can Cancel: Fake Number of Inputs: 5§
Input Name
args.inputs(0). OneStream Shared Wef WorkflowUnitFk
argz.inputs(1). OneS Shared Wef Di ionValidationl:

arge.imputs(2). Svstem String
arge.inputs(3). System Guid

yalidateDimension Transformation
Iz Before Event: True Can Cancel: Fake Number of Inputs: §
Input Name

arge.inputs(4). System. Guid

Iz Before Event: Fake Can Cancel: Fake Number of Inputs: §
Input Name
argz.inputs(0). OneStream Shared Wef WorkflowUnitPk
argz inputs(1). O Shared. Wef Di ionVali

argz.inputs(2). Svstem Siring
arge.inputs(3). System Guid
argz.inputs(4). System.Guid

Iz Before Event: True Can Cancel: Fake Number of Inputs: §
Input Name
argz.inputs(0). OneStream Shared Wef WorkflowUnitPk
arge inputs(1). O Shared. Wef Di ionValidati

argz.inputs(2). Svstem Siring
arge inputs(3). System. Guid
args.inputs(4). System. Guid

Iz Before Event: Fake Can Cancel: Fake Number of Inputs: 5§
Tnput Name
arze inputs(0). OneStream. Shared Wef WorkflowUnitPk
arzs inputs(1). One$ Shared Wef DimensionValidationl

arge.inputs(2). System String
arge.inputs(3). System Guid
arge.inputs(4). System Guid

API Overview Guide

Event Listing

‘alidateDimension

Transformation

Iz Before Event: Trae Can Cancel: Fake Number of Inputs: 5
Imput Name
arge.inputs(0). OneStream Shared Wef WorkflowUnitPk
arzs inputs(1). O Shared Wef D v

args. inputs(2). System String
args. inputs(3). System Guid
args inputs(4). Systam Guid

‘alidateDimension Transformation
Is Before Event: Faks Can Cancel: Fake Number of Inputs: 5§
Input Name

args. inputs(0). OneStream. Shared Wef WorkflowUnitPk

args. inputs(1). OneStream Shared Wef DimensionValidationInfo

args inpnts(2) System String
args inputs(3). System Guid
args inputs(4). System Guid
/alidateDimension
Lz Before Event: Trme Can Cancel: Fake

Transformation
Number of Inputs: 5

Input Name

args.imputs(0). OneStream Shared Wef WorkflowUnitPk

args.inputs(1). OneStream Shared Wef DimensionValidati

arge.inputs(2). System String
arge inputs(3). System Guid
args.imputsi4). System Guid

7alidateDimension

Transformation

Ls Before Event: Fale Can Cancel: Fake Number of Inputs: 5
Input Name
arge.inputs(0). OneStream Shared Wef WorkflowUnitPk
args.imputs(1). O Shared Wef Di ionV

args. inputs(2). System String
args. inputs(3). System Guid

Iz Before Event: Fake Can Cancel: Fake Number of Inputs: §
Input Name
args.inputs(4). System Guid
SetEventRules Transformation
Is Before Event; Fake Can Cancel: Fake Number of Inputs: 4
Input Name
args inputs(0). OmaStream Sharad Wef ValidationTransf P Inf

argz.inputs(1). OneStream Shared Wef WorkflowUnitPk
argz.inputs(2). System Boolean
argz.inputs(3). Svstem. Guid

[EndValidateTransform Transformation
Iz Before Event: Fake Can Cancel: Fake Number of Inputs: 4
Input Name
args.inputs(0). O Shared. Wef. ValidationT

argz.inputs(1). OnaStream.Shared Wef WorkflowUnitPk
arge.inputs(2). System Boolean
argz.inputs(3). System. Guid

pdateWorkflowStatus Workflow
Is Before Event: Trae Can Cancel: True Number of Inputs: 7
Tnput Name

arzs inputs()) OmaStream Sharad Wef Workflowlnfo

arzs inputs(1). OnsStream Shared. Common StapClassificationTypes

argz.inputs(2). O Shared Common.”
args inputs(3). System String
args.inputs(4). System String
argz.inputs(3). System. String
argz.inputs(6). Svstem. Guid

Types

API Overview Guide

82

Event Listing

pdateWorkflowStatus Workflow

Iz Before Event: Fake Can Cancel: True Number of Inputs: 7

Input Name

arge.mputs(0). OnaStream Shared Wef WorkflowInfo
argz.inputs(1). OneStream Shared Common StepClassificationTypes
argz.inputs(2). O Shared. Common. Types

args.inputs(3). System String
argz.inputs(4). System String
arge.inputs(5). System String
args.inputs(f). System Guid

[FinalizeValidateTransform Transformation
Iz Before Event: Fake Can Cancel: Falke Number of Inputs: 4
Input Name
args inputs(0). OnaStream Sharad Wef Validation Transf P Inf;

argz.inputs(1). OneStream Shared Wef WorkflowUnitPk
arge.imputs(2). Svstem Boeolean
args.inputs(3). System Guid

StartValidateIntersect Transformation

Iz Before Event: True Can Cancel: Falke Number of Inputs: 5
Inpui Name
arzs.inputs(0). O Shared Wef Vali

args.inputs(1). OnaStream Shared Wef WorkflowUnitPk
arge.imputs(2). Svstem Boeolean

arge.inputs(3). OnaStream Shared Wef LoadDataMode
argz.inputs(4). System. Guid

pdateWorkflowStatus Workflow
Is Before Event: Trae Can Cancel: True Number of Inputs: 7
Input Name

arzs inputs(l). OnsStream Sharad Wef WorkflowInfo
args.inputs(1). OnsStream Shared Common StepClassificationTypes
arzs inputs(2). OnaStream Sharad Common WorkflowStatusTypas

API Overview Guide

83

Event Listing

pdateWorkflowStatus ‘Workflow
Is Before Event: Trae Can Cancel: True Number of Inputs: 7
Input Name

arge inputs(3). Svstem String
args.inputs(4). System String
argz.inputs(3). System String
args.inputs(§). System Guid

pdateWorkflowStatus ‘Workflow
Iz Before Event: False Can Cancel: Truoe Number of Inputs: 7
Input Name

argz inputs(0). OneStream Shared Wef WorkflowInfo
args.inputs(1). OneStream Shared. Common. StepClassificationTypes
arge inputs(2). OnaStream Sharad Common WorkflowStatusTypes
args.inputs(3). System String

arge inputs(4). System String

args.inputs(5). System String

arge inputs(§). System Guid

[EndValidateIntersect Transformation
Iz Before Event: Falze Can Cancel: Fake Number of Inputs: 5
Input Name
arzs.inputs(0). O Shared Wef Vali

args.inputs(1). OnaStream Shared Wef WorkflowUnitPk
arge inputs(2). Svstem Boeolean

args.inputs(3). OnaStream Shared Wef LoadDataMode
arge inputs(4). Svstem Guid

pdateWorkflowStatus ‘Workflow
Is Before Event: True Can Cancel: True Number of Inputs: 7
Input Name

arzs inputs(D). OneStream Shared Wef Workflowlnfo
arzs inputs(1). OnaStream Sharad Common StapClassificationTypes

Shared. Common. Types

args.inputs(Z). O

API Overview Guide

84

Event Listing

pdateWorkflowStatus ‘Workflow
Is Before Event: True Can Cancel: True Number of Inputs: 7
Input Name

arge inputs(3). System String
args.inputs(4). System String
arge.inputs(3). System. String
arge inputs(f). System Guid

pdateWorkflowStatus ‘Workflow
Is Before Event: Fake Can Cancel: True Number of Inputs: 7
Input Name

arge.inputs(0). OnaStream Shared Wef WorkflowInfo
arge.inputs(1). OneStream Shared Common StepClassificationTypes
args.inputs(2). OneStream Shared. Common WorkflowStatusTypes
arge.inputs(3). System String

arge.inputs(4). System String

args.inputs(5). System Siring

arge.inputs(6). System Gmd

[FinalizeValidateIntersect Transformation
1z Before Event: Falke Can Cancel: Fake Number of Inputs: 5
Input Name
args inputs(0). O Shared Wef Vali

arzs inputs(1) OnaStream Shared Wef WorkflowUnitPk
args.inputs(2). System Boolean

args inputs(3). OnsStream Shared Wef LoadDataModa
arzs inputs(4). System Guid

pdateWorkflowStatus ‘Workflow
Is Before Event: Trae Can Cancel: True Number of Inputs: 7
Input Name

arge.inputs(0). OnaStream Shared Wef WorkflowInfo
arge.inputs(1). OneStream Shared Common StepClassificationTypes
args.inputs(2). OneStream Shared. Common WorkflowStatusTypes

API Overview Guide

85

Event Listing

pdateWorkflowStatus ‘Workflow
Iz Before Event: True Can Cancel: True Number of Inputs: 7
Input Name

argz.inputs(3). System String
arge.inputs(4). System String
args.inputs(5). System String
arge.inputs(6). System Guid

pdateWorkflowStatus ‘Workflow
Is Before Event: Fake Can Cancel: True Number of Inputs: 7
Input Name

args.inputs(D). OneStream Shared Wef Workflowlnfo
args inputs(1). OnsStream Shared Common StapClassificationTypes

argz.inputs(2). O Shared. Common.” Types
arge.inputs(3). System String

args.inputs(4). System String

arge.inputs(5). System String

args.inputs(). System Guid

pdateWorkflowStatus ‘Workflow
Is Before Event: Trae Can Cancel: True Number of Inputs: 7
Input Name

arge.inputs([). OnaStream Shared Wef WorkflowInfo
args.inputs(1). OneStream Shared. Common. StepClassificationTypes
arge.inputs(2). OnaStream Shared Common WaorkflowStatusTypes
args.inputs(3). System String

arge.inputs(4). Svstem String

args.inputs(5). System String

arge.imputs(F). Svstem Gumd

pdateWorkflowStatus ‘Workflow
Is Before Event: Fake Can Cancel: True Number of Inputs: 7
Input Name

args inputs(D). OneStream Shared Wef Workflowlnfo

pdateWorkflowStatus ‘Workflow
Ls Before Event: Fake Can Cancel: True Number of Inputs: 7
Input Name

arzs inputs(1). OneStream Shared Common StepClassificationTypes
arge imputs(2). OneStream Shared Common WorkflowStatusTypas
args.inputs(3). System String

args.inputs(4). System String

arge.inputs(3). System String

arss imputs(6). System Guid

Iz Before Event: Trone Can Cancel: Troe Number of Inputs: 0
Input Name
arge inputs(0). SAVE DATA EVENT IS USED FOR DEBUG ONLY

Iz Before Event: Troe Can Cancel: False Number of Inputs: 5§
Input Name

arge.inputs(0). OnsStream Shared Wef LoadCubaProcezsInfo
argz.inputs(1). OneStream Shared Wef WorkflowUnitPk
arge.inputs(2). System Boolean

argz.inputs(3). OneStream Shared Wef LoadDataMode

arge inputs(4). System Guid

[EndLoadIntersect Transformation
Is Before Event: Fake Can Cancel: Fake Number of Inputs: 5
Input Name

arge.inputs(0). OnsStream Shared Wef LoadCubaProcezsInfo
arge.inputs(1). OneStream Shared Wef WorkflowUnitPk
arge.inputs(2). System Boolean

arge.inputs(3). OneStream Shared Wef LoadDataModa
arge.inputs(4). System Gud

API Overview Guide

86

Event Listing

JpdateWorkflowStatus ‘Workflow
Is Before Event: True Can Cancel: Trae Number of Inputs: 7
Input Name

args.inputs((). OneStream Shared Wef Workflowlnfo

args inputs(1). OneStream Shared Common StepClassificationTypes
args.inputs(2). OneStream Shared Common WorkflowStatusTypes
argz.inputs(3). Svstem Sfring

args.inputs(4). System String

argz. inputs(3). Svstem Sring

args.inputs(6). System Guid

IpdateWorkflowStatus ‘Workilow
Is Before Event: Fake Can Cancel: Trae Number of Inputs: 7
Input Name

args.inputs((). OneStream Shared Wef Workflowlnfo
argz.imputs(1). OnaStream.Shared Common StepClaszificationTypes
args.inputs(2). OneStream Shared Common WorkflowStatusTypes
argz.imputs(3). System String

args.inputs(4). System String

args.inputs(3). System.Siring

args.inputs(6). System Guid

[FinalizeL.oadIntersect Transformation

I: Before Event; Fake Can Cancel: Fake Number of Inputs: 5
Input Name
g inputs(0). OneStream Shared Wef LoadCubeProcesslaf:

args.imputs(1). OneStream Shared Wef WorkflowUnitPk
args.inputs(2). System Boclean
args.inputs(3). OneStream Shared Wef LoadDataMods
args.inputs(4). System Guid
StartLoadIntersect Transformation
Iz Before Event: True Can Cancel: Falze Number of Inputs: 5

API Overview Guide

87

Event Listing

StartLoadIntersect Transformation
Iz Before Event: True Can Cancel: Fake Number of Inputs: 5§
Input Name

argz.inputs(0). On=S Shared. Wef LoadCubePr Inf
argz.inputs(1). OneStream Shared Wef WorkflowUnitPk
argz.inputs(2). System Boclean

arge.inputs(3). OnaStream Shared Wef LoadDatalMods

arzs inputs(4). System Guid

[EndLoadIntersect Transformation
1z Before Event: Fake Can Cancel: Fake Number of Inputs: 5
Imput Name

args inputs(0). OnaStream Shared Wef LoadCubaProesssInfi
arzs inputs(1). OnsStream Shared Wef WorkflowUnitPk
arzs.inputs(2). System Boolean

arzs inputs(3). OnsStream Shared Wef LoadDataMode

arzs inputs(4). System Guid

pdateWorkflowStatus Workflow
Iz Before Event: True Can Cancel: Troe Number of Inputs: 7
Input Name

arge inputs(0). OnaStream Shared Wef WorkflowInfo
argz.inputs(1). OneStream.Shared. Common. StepClassificationTypes
arge.inputs(2). OnaStream Shared. Common WorkflowStatusTypes
arge.inputs(3). Svstem Siring

args.inputs(4). System String

arge.inputs(3). Svstem Siring

args.inputs(f). System Guid

pdateWorkflowStatus Workflow
Iz Before Event: Fake Can Cancel: Troe Number of Inputs: 7
Input Name

arge.inputs(0). OnaStream Shared Wef Workflowlnfo
argz.inputs(1). OneStream.Shared. Common. StepClassificationTypes

pdateWorkflowStatus Workflow
Iz Before Event: False Can Cancel: Truoe Number of Inputs: 7
Tnput Name
argz inputs(2). O Shared. Common. Types

args.inputs(3). System String
arge inputs(4). Svstem String
args.inputs(5). System String
arge inputs(6). Svstem Guid

[FinalizeLoadIntersect Transformation
I: Before Event: Fake Can Cancel: Fake Number of Inputs: 5
Input Name

args.inputs(0). On=$ Sharad. Wef LoadCubePr: Inf:
arge inputs(1). OnaStream Shared Wef WorkflowUnitPk

args.inputs(2). System Boclean
argz.inputs(3). OneStream. Shared Wef LozdDatablode
arge inputs(4). System Guid

StartProcessCube DataQuality
Iz Before Event: Falze Can Cancel: Fake Number of Inputs: 3
Input Name

argz.inputs(0). OnaStream. Shared Wef ProcessCubeProcessInfo
arge.inputs(1). OnaStream Shared Wef WorkflowUnitPk

argz.inputs(2). O Shared. Wef Tazk.
“onsolidate DataQuality
Is Before Event: True Can Cancel: Fake Number of Inputs: 3
Input Name

arge inputs(0). OnaStream Shared Wef WorkflowUnitPk
argz.inputs(1). O Shared. Wef Tazk.
arge inputs(2). OnaStream Sharad Wef DatalUnitinfo

API Overview Guide

88

Event Listing

“onsolidate ataQ
Iz Before Event: Fake Can Cancel: Fake Number of Inputs: 3
Input Name
args.inputs(0). OnaStream Shared Wef WorkflowUnitPk
args inputs(1). Ona% Sharad Wef TaskActivityl
args.inputs(2). OneS Shared. Wef DatalUnitnfc

[NoCalculate
Is Before Event: True Can Cancel: Fake

DataQualit
Number of Inputs: 3

Input Name

argz.inputs(0). OnaStream Shared Wef WorkflowUnitPk
argz.inputs(1). O Shared. Wef Tazk.
arge inputs(2). OnaStream Shared Wef DatalUnitInfo

[NoCalculate

DataQuality

Iz Before Event: True Can Cancel: Fake Number of Inputs: 3
Input Name
argz.inputs(0). OnaStream. Shared. Wef WorkflowUmtPk
args inputs(1). OnaS Shared Wef Task A ctivityT

argz.inputs(2). OnaStream. Shared Wef DataUnitInfo

[EndProcessCube
Iz Before Event: False Can Cancel: Falke

DataQuality
Number of Inputs: 3

Input Name

argz.inputs((). OneStream Shared Wef ProcessCubeProcessInfo
arge.inputs(1). OnaStream. Shared Wef WorkflowUnitPk

args.inputs(2). OnaStream Sharad Wef TaskActivityl
pdateWorkflowStatus ‘Workflow
Is Before Event: True Can Cancel: True Number of Inputs: 7

Input Name

arzs inputs(0) OnaStream Sharad Wef WorkflowInfo
arzs inputs(1). OnsStream Shared. Common StapClassificationTypes

arge. inputs(2). O Shared. Common.’ Types
pdateWorkflowStatus
Is Before Event: True Can Cancel: True

‘Workflow
Number of Tnputs: 7

Input Name

args.inputs(3). System. String
argz.inputs(4). System. String
arge.inputs(3). System String
argz.inputs(6). System. Guid

pdateWorkflowStatus ‘Workflow
Is Before Event: False Can Cancel: True Number of Inputs: 7
Input Name

arzs inputs(D). OnsStream Shared Wef Workflowlnfo
arzs inputs(1]. OnsStream Shared Common StapClassificationTypes

argz.inputs(2). On Shared Common’ Types
args.inputs(3). System. String
argz.inputs(4). System. String
args.inputs(3). System.String
arge.inputs(6). System Guid
[FinalizeProcessCube
Iz Before Event: Fale Can Cancel: Falke

DataQuality
Number of Inputs: 3

Input Name

argz.inputs((). OneStream Shared Wef ProcessCubeProcessInfo
arge inputs(1]. OnaStream Shared Wef WorkflowTUnitPk
argz.inputs(2). On Shared Wef Task:

API Overview Guide

89

Introduction

Introduction

The purpose of the OneStream Finance Functions API Guide is to provide detailed
information about the technologies and application programming interfaces (APIs)
available to consultants and developers interested in extending the functionality of
OneStream.

This document contains information about the technologies used in the OneStream
Software product, naming conventions and organizational approaches used by the
engineering team. It also includes detailed reference listings for APl methods and events
exposed by OneStream.

API Overview Guide 90

Member ID

Member ID

There are many functions that use MemberlD as an integer to pass in as a property.
These functions get the current POV of the specific Dimension member to perform a

variety of tasks, such as:
» Get Current Year based on Time POV
o Example: Api.Time.GetYearFromld(api.Pov.Time.Memberld)
» Get Text field value from Entity POV
o Example: Api.Entity. Text(api.Pov.Entity.Memberld, 1)
* Get Account Type based on current Account POV
o Example: Api.Account.GetAccountType(api.Pov.Account.Memberld)

When working with formulas and calculations, it is better to work with Memberld versus
Member Name.

Api.Pov.Time.Memberid

Api.Pov.Time.Memberld is obtained from the Time Member Id for the current POV being

executed during the calculation. The Time.Memberld is stored as an unique integer to
represent a single Time member. The uniqueness is determined by the combination of

the Year and Period.

API Overview Guide

91

Member ID

4 (O 2019
4 () 2019H1 - H1 2019
4 © 2019Q1 - Q12019
© 2019M1 - Jan 2019
© 2019M2 - Feb 2019
© 2019M3 - Mar 2019
4 O 2019Q2 - Q2 2019
© 2019M4 - Apr 2019
© 2019M5 - May 2019
© 2019M6 - Jun 2018
a4 (O 2019H2 - H2 2019
4 (201903 - Q3 2019
© 2019M7 - Jul 2019
(© 2019M8 - Aug 2019
© 2019M3 - Sep 2019
4 (201904 - Q4 2019
© 2019M10 - Oct 2019
© 2019M11 - Nov 2018
© 2019M12 - Dec 2019

H1 =001
Q1 =002
M1 =003
M2 =004
M3 =005
Q2 =006
M4 =007
M5 =008
M6 =009
H2 =010
Q3 =011

API Overview Guide

92

Member ID

M7 =012
M8 =013
M9 =014
Q4 =015
M10=016
M11 =017
M12=018

The Time Memberld is constructed like this: 2019003000

The api.Pov.Time.Memberld is used as a property in many functions. Here are some of

the most common functions:

« api.Time.GetYearFromld

api.Time.GetPeriodNumFromld

api.Time.GetNumDaysInTimePeriod

api.Time.AddTimePeriods

api.Time.AddYears

Api.Pov.Time.Memberld Usage

Example using api.Pov.Time.Memberld:

Dim timeId 4= Integer = api.Pov.Time.MemberId
BRApi.Errorlog.LogMessage{si, "Timeld = " & timeId)

ErrorLog result:

Timeld = 2018003000

Example using api.Pov.Time.Memberld in a working formula:

API Overview Guide

93

Member ID

'Get Current Year as Integer Based on Current POV TimeId
Dim curYear As Integer = apl.Time.GetYearFromId(api.Pov.Time.MemberId)

@ Function ITimeApi.GetYearFromId({Optional timeld As Integer) As Integer

'Execute Formula only if Current Year is Greater Than or Equal to 2818
If curYear >= 2818 Then
'Only Run for Base Entities and at Local Currency
If (Mot api.Entity.HasChildren() And {api.Cons.IsLocalCurrencyforEntity())}) Then
api.Data.Calculate("A#Cashlalc = A#18808")
End If
End If

Api.Pov.Entity.Memberid

Api.Pov.Entity.Memberld is obtained from the Entity Member Id for the current Entity POV
being executed during the calculation. The Entity.Memberld is stored as a unique integer
to represent a single Entity member. The Entity Member Id is also found using the Grid
View in the Entity Dimension Library.

Members = Dimension Properties | Grid View

Drag a column header and drop it here to group B

MName Y id T
MNone -999
All Orgs 39845890

Total GolfStream 39845940

Clubs 39845899

Api.Pov.Entity.Memberld is used as a property in many functions. Here are some of the
most common functions:

» Get Local Currency Id for current Entity POV.
o Example: api.Entity.GetLocalCurrencyld(api.Pov.Entity.Memberld)

» Get Local Currency Cons Member Name for current Entity POV.

API Overview Guide 94

Member ID

o Example:

api.Entity.GetLocalCurrencyConsMember(api.Pov.Entity.Memberld).Name

» Getvalue in Text Field for Dimension Members prior to executing formula
calculation.

o Example: api.Entity. Text(api.Pov.Entity.Memberld, 1)

» Get Percent Consolidation for Parent Child Relationship and specific to user
localization. Can also determine by Scenario Type and Time.

o Example: api.Entity.PercentConsolidation(api.Pov.Entity.Memberld,
api.Pov.Parent.Memberld, api.Pov.ScenarioTypeld,
api.Pov.Time.Memberld).XFToStringForFormula

» Get Percent Ownership for Parent Child Relationship and specific to user
localization. Can also determine by Scenario Type and Time.

o Example: api.Entity.PercentOwnership(api.Pov.Entity.Memberld,
api.Pov.Parent.Memberld, api.Pov.ScenarioTypeld,
api.Pov.Time.Memberld).XFToStringForFormula

Api.Pov.Entity.Memberld Usage

Example using api.Pov.Entity.Memberld:

Dim entityId As Integer = api.Pov.Entity.MemberId
BRApi.ErrorLog.LogMessage(si, "EntityId = " & entityId)

ErrorLog Result:

Entityld = 29360129

Example using api.Pov.Entity.Memberld in a working formula:

API Overview Guide 95

Member ID

'Get Text Walue in Entity Text 1 Field for Current Entity POV
Dim entityText As String = api.Entity.Text(api.Pov.Entity.MemberId, 1)

'Only Run For Base Entities And at Local Currency
If (Not api.Entity.HasChildren({) &nd (api.Cons.IslLocalCurrencyforEntity({})) Then
'Execute Formulz if Entity has MA in the Entity Text 1 Field
If entityText.XFEqualsIgnoreCase("NA") Then
api.Data.Calculate("A#CashCalc = A#l@@a")
End IF
End If

Api.Pov.Account.Memberid

Api.Pov.Account.Memberld is obtained from the Account Member Id for the current
Account POV being executed during the calculation. The Account.Memberld is stored as
a unique integer to represent a single Account member. The Account Member Id is also
found using the Grid View in the Account Dimension Library.

Members = Dimension Properties = Grid View

Drag a column header and drop it here to group

Name Y id Y

Mone -999
GAAP Account Structure | 49283440
ncome Statement 49283455

69000 49283318

Api.Pov.Account.Memberld is used as a property in many functions. Here are some of the
most common functions:

» Get Account Type based on current Account POV
o Example: api.Account.GetAccountType(api.Pov.Account.Memberld)

» Getvalue in Text Field for Dimension Members prior to executing formula

API Overview Guide 96

Member ID

calculation

o Example: api.Account.Text(api.Pov.Account.Memberld, 1)

Api.Pov.Account.Memberld Usage

Example using api.Pov.Account.Memberld :

Dim accountType As AccountType = apl.Account.GetAccountType(api.Pov.Account.MemberId)
BRApi.ErrorLog.LogMessage(si, "AccountType = " & accountType.ToString)

ErrorLog Result:

AccountType = Revenue

Example using api.Pov.Account.Memberld in a working formula:

"Get Account Type of Account and Use Specific FX Rate Type for Specific Account Types. Used in FimanceFunctionType.FXRate or Dynamic Calc
Dim accountType As String = api.Account.GetAccountType(api.Pov.Account.MemberId)}.ToString
Dim rateType As String = "ClosingRate"

If accountType = "Asset"™ Then

Dim rate As Decimzl = api.FxRates.GetlalculatedFxRate(rateType, api.Pov.Time.MemberId, args.FxRateArgs.SourceCurrencyId, args.FxRateArgs.Destl
Return Mew FxRateResult{rate)

End If

API Overview Guide 97

Dimension Primary Key - DimPk

Dimension Primary Key - DimPk

DimPk is known as Dimension Primary Key. This is a unique primary key that is assigned
to Dimensions when they are created. It is a combination of the DimTypeld and the Dimld.

DimPk is commonly used to identify which Dimension should be used when checking for
members as base members or descendants in a specific Dimension. DimPk is commonly

used in the following functions:
» Get Dimension Primary Key of a Specific Dimension
o Example: api.Dimensions.GetDim("UD1DimName").DimPk
» Checkifitis a Base Member of a Specific Ancestor

o Example: api.Members.IsBase(dimPk, ancestorMemberld, baseMemberld,
dimDisplayOptions)

* Get Base Members of Parent from GetMember

o Example: api.Members.GetBaseMembers(api.Pov.UD1Dim.DimPk,
parent.Memberld, Nothing)

DimPK Usage

Example using DimPK:

Dim dimPK As DimPk = api.Dimensions.GetDim{"CostCenters").DimPk
BRapi.ErrorLog.LogMessage{si, "DimPk for CostCenters = " & dimPK.ToString)

ErrorLog Result:

DimPk for CostCenters = DimTypeld: 9, Dimld: 17

Example using api.Pov.UD1Dim.DimPk in a working formula:

API Overview Guide 98

Dimension Primary Key - DimPk

'Retrieve Base Members of Services in UD1 to Use in GetDataCell Loop
Dim parent Az Member = api.Members.GetMember({DimType.UD1.Id, "Servicesz")}
Dim serviceNames As List(OFf Member) = api.Members.GetBaseMembers(api.Pov.UD1Dim.DimPk, parent.MemberId, Nothing)

'Loop through all the Service Base Members
If Not serviceMames Is Nothing Then
For Each serviceMame As Member In serviceNames
"GetDataCell for All Service Base Members as String and Decimal
Dim serviceNameCellString Az String = ("E#Houston:C#lLocal:S#Actusl:T#2019M1:v#Periodic: A#Dept_Intersection:F#None:0#Forms: I#None:Ul#" & service

Dim serviceMameCell As Decimal = api.Data.GetDatalell(serviceNameCellString).CellAmount
Next
End If

API Overview Guide 99

Dimension Type Id

Dimension Type Id

Dimension Type Id is a property of DimPk. The Dimension Type Id is a unique integer Id
that is assigned to a Dimension. The DimTypeld is found in the Dim table and the
DimTypeld represents each Dimension.

e Entity=0
e Scenario=2

« Account=5

e Flow=6

e UD1=9

« UD2=10
« UD3=11
e UD4 =12
« UD5=13
- UD6 =14
« UD7=15
« UD8=16

The DimTypeld is used in various functions. DimTypeld is most commonly used with the
GetMember or GetMemberld functions where the first property in the function is
DimTypeld. In this case, GetMember and GetMemberld needs to know which Dimension
Id to use for the member the function is looking for.

API Overview Guide 100

Dimension Type Id

» Get a specific Member in a specific Dimension

o Example: api.Members.GetMember(DimType.Account.Id,
"AcctMemberName")

« Get Member Id for a specific Member in a specific Dimension

o Example: api.Members.GetMemberld(DimType.Account.Id,
"AcctMemberName")

DimTypelD Usage

Example using DimTypeld :

Dim dimTypeld As Integer = DimType.Account.Id
BRApi.ErrorLog.LogMessage(si, "DimTypelID for Account = " & dimTypeId.ToString)

ErrorLog Result:

DimTypelD for Account = 5

Example using DimType.Account.ld in a working formula:

'Get Cash Account Member and Store &s a Variable to Pass into Api.Data.Calculate
Dim acctMember As Member = api.Members.GetMember(DimType.Account.Id, "le@ge")
gpi.Data.FormulaVariables.SetMemberVariable("varizbleAccount”,acctMember)
agpl.Data.Calculate("A#CashCalc= AfvariableAccount * 188")

API Overview Guide

101

Data Unit Dimension POV

Data Unit Dimension POV

Stored calculations run based on the Data Unit POV. The Data Unit Dimension consists of
Cube, Entity, Parent, Consolidation, Time, and Scenario.

Because stored calculations run off Data Unit Dimensions, these Dimensions are used as
part of If Statements to execute calculations on conditions. The Data Unit Dimensions
should not be used as destination data buffers, and should not be used on the left hand
side of the equation in a api.Data.Calculate formula.

Account related Dimensions such as Account, Flow, and UD’s are not available at run-
time of the calculations. Therefore, they cannot be used in the If Statements for stored
calculations. However, they are available for Dynamic Calculations.

Run for POV and Check Member Names for Data Unit Dimensions Before Executing
Calculation:

« If api.Pov.Cube.Name.XFEqualslgnoreCase("CubeName") Then
« If api.Pov.Entity.Name.XFEqualslgnoreCase("EntityName") Then
« If api.Pov.Scenario.Name.XFEqualslgnoreCase("ScenarioName") Then

« If api.Pov.Cons.Name.XFEqualslignoreCase("USD") Then

Data Unit Dimension POV Usage

Example using api.Pov.Entity.Name :

Dim entityPovName As String = api.Pov.Entity.MName
BRApi.ErrorLog.LogMessage(si, "Entity Pov Mame = " & entityPovMame)

ErrorLog Result:

Entity Pov Mame = Houston Heights

Example using api.Pov.Entity.Name in a working formula:

API Overview Guide 102

Data Unit Dimension POV

"Only Run Calculation For Houston Heights

If api.Pov.Entity.Name.XFEqualsIgnoreCase("Houston Heights") Then
api.Data.Calculate("A#CashCalc = ARLle08a")

End If

"Only Run Calculatiom For Houston Heights
Dim entityPovhame As String = api.Pov.Entity.MName

If entityPovName.XFEqualsIgnoreCase("Houston Heights™) Then
api.Data.Calculate("A#Cashlalc = ARL1B@28")
End IF

API Overview Guide 103

Time Functions

Time Functions

The following APls are some of the most common time functions:
» api.Time.GetYearFromld
» api.Time.GetPeriodNumFromld
« api.Time.GetNumDaysInTimePeriod
» api.Time.AddTimePeriods

« api.Time.AddYears

Api.Time.GetYearFromid

This function gets the year from the current POV Time Id. It evaluates the year and then
introduces logic to execute the formula.

"Get Current Year as Integer Based on Current POV Timeld
Dim curYear As Integer = api.Time.GetY¥YearFromId(api.Pov.Time.MemberId)

@ Function ITimeApi.GetYearFromId(Optional timeld As Integer) As Integer

"Execute Formula only if Current Year is Greater Than or Equal to 2818
If curYear >= 2818 Then
'Only Run for Base Entities and at Local Currency
If (Mot api.Entity.HasChildren() And (api.Cons.IslLocalCurrencyforEntity())}) Then
api.Data.Calculate("A#Cashlalc = A#1EEE8")
End If
End If

Api.Time.GetPeriodNumFromld

This function gets the period number from the current POV Time Id. The period is static
and is configured with either months or weeks followed by the period number. For

example: M1 -M12 or W1 —W54. It evaluates the period number and then introduces
logic to execute the formula.

Api.Time.GetPeriodNumFromid Usage

Example using api.Time.GetPeriodNumFromld :

API Overview Guide 104

Time Functions

"Get Current Period As Integer Based on Current POV TimeId
Dim curPeriod As Integer = api.Time.GetPeriodMumFromId(api.Pov.Time.MemberId)
BRApi.ErrorLog.LogMessage(si, "Period Number = " & curPeriod)

ErrorLog Result:

Period Number = 1

Example using api.Time.GetPeriodNumFromld in a working formula:

"Get Time Member Id to Get Year and Period
Dim timeId As Integer = api.Pov.Time.MemberId

"Get Current Year As Integer Based On Current POV TimeId
Dim curYear As Integer = api.Time.GetYearFromId(api.Pov.Time.MemberId)

"Get Current Period As Integer Based on Current POV TimeId
Dim curPeriod As Integer = api.Time.GetPeriodNumFromId(api.Pov.Time.MemberId)

@ Function ITimeApi.GetPeriodNumFromId({Optional timeld As Integer) As Integer

"Execute Formula only if Current Year is Greater Than or Equal to 2018
"AND Current Period Number is Greater Than or Egual to 1
If curYear »= 2818 And curPeriod >= 1 Then
'Only Run for Base Entities and at Local Currency
If (Mot api.Entity.HasChildren() And (api.Cons.IslLocalCurrencyforEntity())) Then
api.Data.Calculate("A#Cashlalc = A#1@088")
End If
End IF

Api.Time.GetNumDaysInTimePeriod

This function gets the number of days from the current POV Time Id. The number of days

are already programmed depending on the month that is selected. It evaluates the
number of days for a period and then introduces logic to execute the formula.

Api.Time.GetNumDaysInTimePeriod Usage

Example using api.Time.GetNumDaysInTimePeriod:

'Get Current Mumber of Days in Time Period
Dim numDays &s Integer = apl.Time.GetMumDaysInTimePeriod(apl.Pov.Time.MemberId)
BRApi.ErrorLog.lLogMessage(si, "Mumber of Days in Periocd = " & numDays)

API Overview Guide

105

Time Functions

ErrorLog Result:

Mumber of Days in Period = 31

Example using api.Time.GetNumDaysInTimePeriod in a working formula:

'Get Time Member Id to Get Year and Period
Dim timeld Az Integer = api.Pov.Time.MemberId

'Get Current Year As Integer Based On Current POV TimeId
Dim curYear fAs Integer = api.Time.GetYearFromId({api.Pov.Time.MemberId)

'Get Current Period As Integer Based on Current POV TimeId
Dim curPeriod &s Integer = api.Time.GetPeriodWumFromId(api.Pov.Time.MemberId)

'Get Current Number of Days in Time Period
Dim numDays &s Integer = apl.Time.GetMumDaysInTimePeriod(apl.Pov.Time.MemberId)

£ Function ITimeApi.GetNumDaysInTimePeriod(Optional timeld As Integer) As Integer

'"Execute Formula only if Current Year iz Greater Than or Equal to 2818
'AND Current Period Number is Greater Than or Equal to 1
"AMND Number of Days is Greater Tham or Equal to 3@ Days
If (curYear »= 2818 And curPeriod »>= 1 And numDays »= 3@8) Then
'Only Run for Base Entities and at Local Currency
If (Mot api.Entity.HasChildren() And (api.Cons.IslLocalCurrencyforEntity())) Then
gpi.Data.Calculate("A#Cashlalc = A#10@888")
End If
End If

Api.Time.AddTimePeriods

This function adds time periods to the current POV Time Id. It passes that data to different
functions like GetPeriodNumFromld and then introduces logic to execute the formula.

Api.Time.AddTimePeriods Usage

Example using api.Time.AddTimePeriods:

'Get Current Time Member Id, Add 2 Periods, and Ok to Span Years

"Example: Current Time Member Id = 2818083808. Add 2 Periods, Then Member Id = 2818905088

Dim addTime &s Integer = apl.Time.AddTimePeriods(api.Pov.Time.MemberId, 2, True)
BRAp1.ErrorLog.LogMessage(si, "Add Time Periods = " & addTime)

ErrorLog Result:

API Overview Guide 106

Time Functions

Add Time Periods = 2018005000

Example using api.Time.AddTimePeriods in a working formula:

'Get Time Member Id to Get Year and Period
Dim timeIld As Integer = api.Pov.Time.MemberId

'Get Current Time Member Id, Add 2 Periods, and Ok to Span Years
'Example: Current Time Member Id = 2812093888. Add 2 Periods, Then Member Id = 2913885808
Dim addTime As Integer = apl.Time.AddTimePeriods(api.Pov.Time.MemberId, 2, True)

) Function ITimeApi.AddTimePeriods{timeld As Integer, numTimePeriodsToAdd As Integer, okToSpanYears As

'Get Period from Add Time Period and Pass in GetPeriodNumFromId
Dim periodMum As Integer = api.Time.GetPeriodMumFromId{addTime)

'"Execute Formula Only in Mar Period
If periodWum = 3 Then
'Only Run for Base Entities and at Local Currency
If (Mot api.Entity.HasChildren() &nd (api.Cons.IslLocalCurrencyforEntity())}) Then
api.Data.Calculate(”A#CashCalc = A#l@@aa")
End If
End If

Api.Time.AddYears

This function adds years to the current POV Time Id. It passes that data to different
functions like GetYearFromld or GetPeriodNumFromld and then introduces logic to
execute the formula.

Api.Time.AddYears Usage

Example using api.Time.AddYears:

"Get Current Time Member Id and Add 2 Years

"Example: Current Time Member Id = 2015803800. Add 2 Years, Then Member Id = 2028003008

Dim addYears As Integer = api.Time.AddYears{api.Pov.Time.MemberId, 2)
BRApL.ErrorLog.LogMessage(si, "Added 2 Years To Current Time POV = " & addYears)

ErrorLog Result:

Added 2 Years To Current Time POV = 2020003000

Example using api.Time.AddYears in a working formula:

API Overview Guide 107

Time Functions

'Get Current Time Member Id and Add 2 Years
'Example: Current Time Member Id = 2018083008. Add 2 Years, Then Member Id = 2020083800
Dim addyYears Az Integer = api.Time.AddYears{api.Pov.Time.MemberId, 2)

@ Function ITimeApi.AddYears(timeld As Integer, numYearsToAdd As Integer) &s Integer

'‘Get Year from addYears and Pass it in for GetYearFromId function
Dim futurevYear 45 Integer = api.Time.GetYearFromId{addYears)

'Execute Formula Only in Year 2828
If futureYear = 2828 Then
'Only Run for Base Entities and at Local Currency
If (Mot api.Entity.HasChildren() And (api.Cons.IslLocalCurrencyforEntity())) Then
api.Data.Calculate("A#CashCalc = A#leeaa")
End IF
End IF

API Overview Guide 108

Using Member Functions for Calculations

Using Member Functions for
Calculations

Calculation Member functions are commonly used through the Finance Api’s for
accessing general information for any specified Member within a dimension. The Member
functions allow a rule writer to identify members, get member information, and identify
base and parent members to execute within Member Formulas and Business Rules.

The following are some of the most common Member functions for calculations:
» GetMember
+ GetMemberlD

 GetBaseMembers

GetMember

This function gets a specific dimension member. It is used for different functions like
api.Data.FormulaVariables, GetBaseMembers function, custom member lists, and when
working with Member Id within data buffers for processes like custom consolidation.

GetMember Usage

Example using GetMember:

Dim getMember As Member = api.Members.GetMember(DimType.Account.Id, "1@@88")
BRapi.ErrorLog.LogMessage(si, "Member Property Info = " & getMember.ToString)

ErrorLog Result:

Member Property Info = DimTypeld: 5, Memberld: 39845888,
MName: 10000, Description: Petty Cash, Dimld: 38

Example using GetMember in a working formula:

API Overview Guide 109

Using Member Functions for Calculations

'Get Cash Account Member and Store &s a Variable to Pass into Api.Data.Calculate
Dim acctMember As Member = api.Members.GetMember(DimType.Account.Id, "l@2ge")
gpi.Data.FormulaVariables.SetMemberVariable("varizbleAccount”,acctMember)
apl.Data.Calculate("A#CashCalc= AfvarlableAccount * 1@@")

GetMemberld

This function gets a specific dimension member Id. This technique is commonly used
when working with source Data Buffers where the cells for a specific member Id need to
be changed.

GetMemberlID Usage

Example using GetMemberld:

Dim getMemberId As Integer = api.Members.GetMemberId(DimType.Account.Id, "l@@ee")
BRapl.ErrorLog.LogMessage(si, “"Member Id for 18888 = " & getMemberId.ToString)

ErrorLog Result:

Member Id for 10000 = 39845588

Example using GetMemberld in a working formula:

API Overview Guide 110

Using Member Functions for Calculations

"Get Member Id for CashCalc Account
Dim cashCalcId As Integer = api.Members.GetMemberId(DimType.Account.Id, "CashCalc")

"Create a data buffer with the cells from S#Actual:A#18888 and copy the cells to S#ActualCopy:A#CashCalc

Dim destinationInfo As ExpressionDestinationInfo = api.Data.GetExpressionDestinationInfo{"S#ictualCopy”™)

Dim sourceDataBuffer As DataBuffer = api.Data.GetDataBuffer(DatatpiScriptMethodType.Calculate, "S#Actual:A#18868", desti

"Check that the source Data Buffer exists

If Not sourceDataBuffer Is Nothimg Then
'Create a new result data buffer for data cells
Dim resultDataBuffer As DataBuffer = New DataBuffer()
'Loop through source data cells from the source data buffer
For Each sourceCell As DataBufferlell In sourceDataBuffer.DataBufferlells.Values

'"Only get source cells that have data
If (Not sourceCell.CellStatus.IsNoData) Then

'Copy the cell from 18888 - Petty Cash to CashCalc Account in ActualCopy Scenario
'The source data buffer contains source data cells with 18989 - Petty Cash AccountId
'Change the source Account Id for 18888 - Petty Cash with the CashCalc Account Id

Dim resultCell As New DataBufferCell(sourceCell)
resultCell.DataBufferCellPk.AccountId = cashCalcId
resultDataBuffer.5etCell(api.0bConntpp.5I, resultCell)

End If

Next
'Set Destination Data Buffer with new Data Buffer with new cells including the CashCalc AccountId

api.Data.SetDataBuffer{resultDataBuffer, destinationInfo)

End If

GetBaseMembers

This function gets base members from a specific parent member. It is commonly used
when working with Member Lists as part of FinanceFunctionType.MemberList, or to get
base members to loop through specific dimensions for api.Data.GetDataCell.

GetBaseMembers Usage

Example using GetBaseMembers:

API Overview Guide 111

Using Member Functions for Calculations

'Retrieve Base Members of Services in UD1 to Use in GetDataCell Loop
Dim parent As Member = api.Members.GetMember(DimType.UD1l.Id, "Services™)
Dim serviceNames As List({0f Member) = api.Members.GetBaseMembers(api.Pov.UDiDim.DimPk, parent.MemberId, Nothing)

'Loop through all the Service Base Members
If Not serviceNames Is Mothing Then
For Each serviceMame Az Member In serviceMames
BRapi.ErrorLog.lLogMessage(si, "List of Base Members = " & serviceMame.ToString)

ErrorLog Result:

List of Base Members = DimTypeld: 3, Memberld:
17825805, Name: GroundsMaint, Description: Ground
Maintenance, Dimld: 17

List of Base Members = DimTypeld: 9, Memberld:
17825797, Name: EquipMaint, Description: Equipment
Maintenance, Dimld: 17

List of Base Members = DimTypeld: 9, Memberld:
17825804, Mame: GolfPros, Description: Golf Pro Staff,
Dimld: 17

List of Base Members = DimTypeld: 3, Memberld:
17825814, Name: ProShop, Description: ProShop Retail,
Dimld: 17

Example using GetBaseMembers in a working formula:

'Retrieve Base Members of Services in UD1 to Use in GetDataCell Loop
Dim parent As Member = api.Members.GetMember(DimType.UD1.Id, “"Services™)
Dim serviceNames As List(Of Member) = api.Members.GetBaseMembers(api.Pov.UD1Dim.DimPk, parent.MemberId, Nothing)

‘Loop through all the Service Base Members
If Mot serviceMames Is Nothing Then
For Each serviceName As Member In serviceNames
‘GetDataCell for All Service Base Members as String, Decimal, and for International Rule Writing
Dim serviceNameCellString As String = (“E#Houston:C#local:S#Actual:T#2019M1:V#Periodic: A#Dept_Intersection:F#lone:0#Forms i I#None: Ul#" & serviceName.Name & ":U2#UD1Default:
Dim serviceNsmeCell As Decimal = api.Data.GetDataCell(serviceNameCellString).CellAmount
Dim serviceNameCellText As String = serviceNameCell.ToString("G", CultureInfo.InvariantCulture)

‘Check cell amount for intersection and then introduce logic based on cell amount
‘Use Data Buffer logic or api.Data.Calculate with SetDataBufferVariable function when in 1oop‘
Next
End If

API Overview Guide 112

Writing Stored Calculations

Writing Stored Calculations

When writing a Member Formula or a Business Rule for a Stored Calculation, the new
calculated numbers store data for that Cube, Entity, Parent, Cons, Scenario, and Time
combination. For example, a Data Unit.

Return is never seen in a Member Formula for Formula Pass. Instead of being returned,
many numbers are calculated and stored. When running a Calculation, Translation, or
Consolidation, it calls the Member Formula once for an entire Data Unit. OneStream
does not tell with which Account, Flow, or User Defined the numbers are being saved.

Initially, this may be confusing because Member Formulas are often written in an
account’s Formula property, and administrators believe OneStream will only allow that
specific Member Formula to write to that specific account. However, putting a Member
Formula in an account’s Formula property is only for organizational purposes. When
OneStream calls that formula, it is currently calculating a Data Unit and will initialize the
API engine with only the Data Unit Dimensions.

Basic stored formulas are commonly used via the Api.Data.Calculate api function.
Api.Data.Calculate is used in three different ways:

» Api.Data.Calculate using Formula as String, Overload Functions, Eval Function, and
IsDurableCalculatedData

api.Data.Ca]culate(l)

A 1of 3¥ @ sub DataApi.Calculate(formula As String, Optional accountFilter As String, Optional flowFilter As String, Optional originFilter As String, Opticnal icFilter As
String, Optional ud1Filter As String, Optional ud2Filter As String, Optional ud3Filter As String, Optional ud4F\Ite|‘]§s String, Optional udSFilter As String, Optional
ud6Filter As String, Optional ud7Filter As String, Optional ud&Filter As String, Optional onEvalDataBuffer As EvalDstaBufferDelegate, Optional userState As Object,
Optional isDurableCalculatedData As Boolean)

» Api.Data.Calculate using Formula as String and IsDurableCalculatedData

api.Data.Calculate()

| 4 2of 3w @ Sub Dataspi.Calculate(formula As String, isDurableCalculatedData As Boolean) ‘

« Api.Data.Calculate using Formula as String and Eval Function

api.Data.Calculate()
| 4 3of 3% @ Sub Dataspi.Calculate(formula As String, onEvalDataBuffer As EvalDataBufferDelegate, Optiona userSF\ate As Object)

API Overview Guide 113

Writing Stored Calculations

Overload Function

The most common function is Api.Data.Calculate, which sets the value of one or more
dimension values (left side of formula) equal to another (right side). Final arguments
(optional) are added to the formula for Overload Functions, Evals, and Durable Data.

The Api.Data.Calculate function must abide by the data explosion rules, which means
that the left side and the right side of the formulas are balanced with the same dimension
values on both sides. If a Member is specified for a Dimension anywhere on the right side
of the equation, you must explicitly specify something for that Dimension on the left side of
the equation.

This variation of the Api.Data.Calculate provides Member Filters (all optional) which can
be used to filter the results before saving them to the target or destination. This function is
the most powerful of the Api.Data.Calculate functions as it allows you to filter
intersections. In addition, the Eval function adds the ability to filter down the number of
individual data cells processed by data cell attributes such as CellAmount or CellStatus.

This function is commonly used to filter the source data buffer by base members of an
Account related dimension. For example, A#Sales may be the source data buffer but the
need for all products is not required for the calculation. Instead, A#Sales may need to be
calculated by the base members of Clubs. By using Clubs.Base for A#Sales, the A#Sales
data buffer has been reduced to only include Clubs.Base.

Api.Data.Calculate Usage
Example using Overload Function in a working formula:

'Add & Formula and use API.Data.Calculate with a filter on UD2 (product) so that

'A#[ClubsSalesCalc] = the A& @00 account (Operating Sales) For just the base products under UD2#Clubs
‘Hint: api.Data.Calculate("A#[ClubsSalesCalc] = A¥6620™,,,,,,"UD2 MEMBER FILTER GOES HERE")

'Formula will run at the base and parent levels

If {(Not api.Entity.HasChildren{)) And (api.Cons.IslocalCurrencyforEntity{))) Then
api.Data.Calculate("A#ClubsSalesCalc = A#68082",,,,,, ['u24C1ubs . Base")
End If

A 10of 3% @ Sub Datatpi.Calculate(formula As String, Optional accountFilter As String, Optional flowFilter As String, Optional originFilter As String, Optional icFilter As String,
Optional ud1Filter As String, Optional ud2Filter As String, Optional ud3Filter As String, Optional ud4Filter &s String, Optional udSFilter As String, Optional
ud6Filter As String, Optional ud7Filter As String, Optional udBFilter As String, Optional onEvalDataBuffer As |DataBufferDelegate, Optional userState As Object,
Optional isDurableCalculatedData As Boolean)

API Overview Guide 114

Writing Stored Calculations

IsDurableCalculatedData

This variation of Api.Data.Calculate lets you define whether data is durable or not.
Durable data is not cleared automatically when a Data Unit is re-calculated. It can only be
cleared by calling api.Data.ClearCalculatedData with the clearDurableCalculatedData
Boolean property set to True. As part of the standard Calculation sequence that runs
during a Calculate or Consolidate, Durable data will be ignored from processing the clear,
unless the clear is specifically defined within the Business Rule or Member Formula.

The most common reason to set the IsDurableCalculatedData to True is for seeding
purposes. As part of the first seeding, the goal may be to seed from one Scenario to
another just once and never seed it again. In this case, the seeded data should not be
cleared at any point during the Calculate or Consolidate process. This technique is
commonly used in Budget or Forecast processes where you are executing the seeding
through a Dashboard. The formula may be applied as a
FinanceFunctionType.CustomCalculate or a FinanceFunctionType.Calculate in a
Business Rule.

IsCurableCalculatedData Usage

Example using IsDurableCalculatedData in a working formula:

Case Is = FinanceFunctionType.CustomCalculate

'Define & unique Function Mame that will be passed into Custom Calculate process
If args.CustomCalculatedrgs.FunctionMame. XFEqualsIgnoreCase("CopyScenario™) Then

'Declare variables that will be passed into api.Data.Calculate.

‘Selected values from parameters will be passed into api.Data.Calculate formula

Dim selectedTime As String = args.CustomCalculateArgs.MameValuePairs("SelectedTime™)
Dim sourceScenario As String = args.CustomCalculateArgs.NameValuePairs("SourceScenario™)
Dim targetScenario As String = args.CustomCalculateArgs.NameValuePairs("TargetScenario™)

'Only run for base entities and local currency
If ((Mot api.Entity.HasChildren{)) And (api.Cons.IsLocalCurrencyforEntity())) Then
‘Using api.Data ate function with formula and IsDurableCalculatedData set to TRUE As Boolean.

‘Can use filters as well. Use RemoveMoData function or EVAL to eliminate processing data cells with NODATA
api.Data.Calculate("S#[" & targetScenarioc & "]:T#[" & selectedTime & "] = RemoveloData(S#[" & sourceScenario & "]:T#[" & selectedTime & "])", True)
End If

End If

Eval Function

Eval has an advanced capability that lets you get at the individual Data Cells in any Data
Unit created while processing an api.Data.Calculate script. It allows Eval() to be wrapped
around a subset of the formula’s math in order to evaluate the Data Buffer that was just
created by running that math.

API Overview Guide 115

Writing Stored Calculations

Prior to the 5.0 version and the introduction of the RemoveNoData function, Eval was
commonly used to evaluate individual data cells in a source data buffer to process based
on cell amount or cell status. Evaluating the number of No Data Cells for a Data Unit is an
important factor for performance and calculation efficiencies.

Eval was initially an important function to evaluate individual data cells but it has been
replaced with newer techniques such as GetDataBuffer and
GetDataBufferUsingFormula, and looping through cells within the data buffer, as well as
the Remove functions.

Eval Function Usage

Example using Eval in a working formula:

API Overview Guide 116

Writing Stored Calculations

[Formula Footer...]
[)

IPrivate Sub OnEvalDataBuffer (ByVal api As FinanceRulesApi, ByVal evalMame As String, ByVal eventérgs As EvalDataBufferEventérgs)
Try

"Start with and empty list of result cells.
"Good practice - Clear out DataBufferResults before executing

eventArgs.DataBufferResult.DataBufferlells.Clear()

"Loop over the source cells and assign & bonus % based on level
For Each scurceCell As DataBufferCell In eventArgs.DataBufferl.DataBufferCells.Values

'Only get source cells that have data and are greater than or egual to @
If (Mot scurceCell.CellStatus.IsNoData) And (sourceCell.CellAmount >= @.8@) Then
'Create new data buffer cells with the filtered data cells
Dim resultCell As New DataBufferCell(sourceCell)
"Condition if Level is greater than or egual to 1 and less than 2
If (sourceCell.CellAmount »>= 1.88) &nd (sourceCell.CellAmount < 2.88) Then
'Return 1% to multiply by Salary or A#58208
resultfell.CellAmount = @.1@

'Condition if Level is greater than or equal to 2 and less than 3

Else If (sourceCell.CellAmount »= 2.80) And (sourceCell.CellAmount < 3.88) Then
'Return 28% to multiply by Salary or A#58208
resultlell.CellAmount = @.2@

'Condition if Level is greater than or equal to 3 and less than 4

Else If (sourceCell.CellAmount »= 3.80) And (sourceCell.CellAmount < 4.88) Then
'Return 3% to multiply by Salary or A#58208
resultlell.CellAmount = @.3@

Else 'All other conditions
'Return 5% to multiply by Salary or A#58200
resultfell.CellAmount = @.85

End If
'Set the final results of the data cells for the Data Buffer
eventArgs.DataBufferfesult.Setlell(api.SI, resultcell, False)

End If
Hext

Catch ex As Exception
Throw ErrorHandler.LogWrite(api.SI, New XFException(api.SI, ex))
End Try
End Sub

API Overview Guide 117

Summary

Summary

The Api.Data.Calculate is the easiest and simplest way to write a formula as a Member
Formula or a Business Rule. The construction of an Api.Data.Calculate formula must be
balanced on each side of the formula with the appropriate dimensions to prevent data
explosion. There are three different ways to use the Api.Data.Calculate function: Formula
with Overload, Formula with IsDurableCalculatedData, and Formula with Eval.

From a performance perspective:
1. Never use the Api.Data.Calculate in a loop when using variables.

2. Use Remove functions whenever possible especially for sparse data models with
lots of NODATA cells.

3. GetDataBuffer and GetDataBufferUsingFormula may have a better performance
impact. Try replacing Api.Data.Calculate when doing math with GetDataBuffer
math. In some cases, performance is better by using GetDataBuffer functions in
place of Api.Data.Calculate.

API Overview Guide 118

Remove Functions

Remove Functions

Remove Functions were introduced in the 5.0 release. They replaced the reasons to use
the Eval function. The basic need of the Eval function was to evaluate the individual data
cells within a source data buffer to apply logic for processing. In many cases, OneStream
did not want to process data cells in source data buffers that had a Cell Status of
NODATA or Cell Amount = 0. With the 5.0 release, functions do that without the need for
writing additional logic.

The RemoveNoData and RemoveZeros functions provide the ability to not process
individual data cells within a source data buffer. They wrap the Remove() around a subset
of the formula to prevent processing of individual data cells from within a source data
buffer. Remove functions are used in Member Formulas or Business Rules.

Remove functions are used for performance reasons. Data Units may contain a great
amount of NODATA data cells or 0 value data cells. These cells could be needlessly
processed during calculation execution if these functions are not used in a
Api.Data.Calculate formula.

RemoveZeros

RemoveZeros is used to remove data cells with a cell amount of 0 from the source data
buffer. In addition, this function removes data cells with a cell status of NODATA from the
source data buffer. It is important to evaluate if the Os are needed for the
Api.Data.Calculate formula during calculation execution.

RemoveNoData

RemoveNoData removes data cells with a cell status of NODATA ONLY from the source
data buffer. Unlike the RemoveZeros function, this function does not remove data cells
with a cell amount of O.

NODATA cells and 0 cells can be found using the following methods:

API Overview Guide 119

Remove Functions

1. Review the Data Unit Statistics when you right-click on a cell in Cube View.

2. Review the Application Analysis Dashboard and check the Entity Data Statistics
Report.

This is based on the Data Unit and Entity Data Statistics. There may be many Member
Formulas and Business Rules that are driving data creation. Therefore, all formulas would
need to be evaluated to determine whether these Remove functions are used. The higher
the percentage ratio of NODATA cells to Total Number of Stored Records, the more
important it is to use these Remove functions.

Example = 3,203 Stored Records with 2,019 of those Stored Records as NODATA
cells. Nearly 65% of the Data Unit has NODATA cells to process which causes extra
calculation time.

The Review functions can be found in Key Functions under Snippets.

(7) Data Unit Statistics

B Point Of View
Cube Housten
Entity Housten Heights
Parent
Consclidation UsD
Scenario Actual
Time 2018mM1
E General
Total Mumber of Stored Records 3203
B NODATA Status
[Number of NODATA Cells 2019 |
Mumber of Zero Cells 125
Mumber of Real Cells 1059
Mumber of Derived Cells 0

shboard - Entity Data Stats
TR

Entity Data Statistics

IE&Q-@‘E{W% 1@ K[d d P Pl

Document Map 2 x

Data Statistics. R L
2010 (TZEntlty Data Statistics
Entity: Houston Heights
il e]
2017 g e

e

2018 Actual

2018M1 Cons Member TotsiCells RealDataCells InputCells JoumnalCells CalcCells NoDataCells Zero Data Cells
‘‘‘‘‘‘‘‘

uso 2203 1058 512 1858 2018 125

API Overview Guide 120

Remove Functions

Remove Functions Usage

Example using RemoveZeros in a working formula:

'Declare variable To Get period number From the current time peried
Dim curMonth As Integer = api.Time.GetPeriodNumFromId(api.Pov.Time.MemberId)
"Run for Entity Base Members Only
If (Mot api.Entity.HasChildren()) Then
"Check to see if current month is MI.
'If so, pull Ending Balances From M12 prior year. We are using F#MNone for this exercise
"If M2 - M12, pull Ending Balances or F#None from prior periocd in current year
"Only run the calculation for Balance Sheet base accounts
'Remove data cells with cell amount of @ and cell status of NoData
If curMonth = 1 Then
api.Data.Calculate(" F#BegBalCalcRemove= RemoveZeros(F#None:T#PovPriorYearMl2)", "A#[Balance Sheest].Base™)
Else
api.Data.Calculate(F#BegBalCalcRemove = RemoveZeros(F#BegBalCalc: T#PovPriorl)”, "A#[Balance Sheet].Base™)
End If
End If

Example using RemoveNoData in a working formula:

'Declare variable to get period number from the current time period
Dim curMonth As Integer = api.Time.GetPeriodNumFromId(api.Pov.Time.MemberId)
"Run for Entity Base Members Only
If (Mot api.Entity.HasChildren()) Then
"Check to see if current month is M1.
"If so, pull Ending Balances From M12 prior year. We are using F#None for this exercise
"If M2 - M12, pull Ending Balances or F#None from prior pericd in current year
"Only run the calculation for Balance Sheet base accounts
"Remove data cells with cell status of MoData ONLY
If curMonth = 1 Then
api.Data.Calculate("F4#BegBalCalcRemove= RemowveNoData(F#None:T#PovPriorYearMl2)", "A#[Balance Sheet].Base™)
Else
api.Data.Calculate("F#BegBalCalcRemove = RemoveMoData(F#BegBalCalc:T#PovPriorl)”, "A#[Balance Sheet].Base™)
End If
End If

API Overview Guide 121

GetDataBuffer Functions

GetDataBuffer Functions

A Member Script may not be defined for the Api.Data.Calculate function because multiple
Data Cells, which seem completely unrelated to each other, are being processed and
none of the Dimension Members are constant. For those situations, use the
GetDataBuffer and SetDataBuffer functions.

GetDataBuffer and SetDataBuffer are more fundamental than using an Eval
function. They allow you to read numbers using a Member Script, process or modify each
cell in the result, and then save the changes. Common GetDataBuffer functions include:

o GetDataBuffer
o GetDataBufferForCustomShareCalculation

GetDataBufferForCustomElimCalculation

GetDataBufferUsingFormula

SetDataBuffer

When using api.Data.Calculate functions, it is important to know which Member a formula
is attached to. For example, if the formula starts with Api.Data.Calculate(“A#Sales1 =
...7), put the formula in the Sales1 account Member’s Formula setting.

However, when using GetDataBuffer functions, the formula may not be writing to a
specific Member. Every Data Cell saved is possibly written to a different dimension
member. In this case, the logic can be developed in a Business Rule and could be created
as a Sub routine to execute throughout Finance Business Rules.

GetDataBuffer Function

GetDataBuffer retrieves a Data Unit’s values during a particular consolidation,
calculation, or translation. When using GetDataBuffer, this is equivalent to the source
data buffer or to the right side of the equation for Api.Data.Calculate. Depending on which
GetDataBuffer function you are using, three or four properties can be used.

For the basic GetDataBuffer, three properties are used:

API Overview Guide 122

GetDataBuffer Functions

» ScriptMethodType As DataApiScriptMethodType
» SourceDataBufferScript As String
» ExpressionDestinationInfo As ExpressionDestinationinfo

The scriptMethodType typically uses the Calculate option for DataApiScriptMethodType.

The sourceDataBufferScript is equivalent to the right side of the equation for the
Api.Data.Calculate.

The expressionDestinationinfo is equivalent to the left side of the equation for the
Api.Data.Calculate. Frequently, this gets manipulated using the Dimension Id, passing in
the Dimension Member Id for the data buffer primary key.

The GetDataBuffer can be used in various ways, and is not limited to the following:

1. Use Data Buffers to perform Data Buffer math. In some cases, this can perform
better than an Api.Data.Calculate.

2. Use GetDataBuffer in place of Api.Data.Calculate to use in Sub routines which
execute code and instructions, are stored in memory, and are used within Functions
throughout Finance Business Rules.

GetDataBuffer Usage

Example using GetDataBuffer with Data Buffer Math in a working formula:

‘Alternate way to api.Data.Calculate("Ad#DataBufferMath:UD2#None = A#6@999:UD2#Top - A#54580:UD2#Top™). May have better performance impact.

"Run only for Local Currency and Base Entities
If ((Not api.Entity.HasChildren()) And (api.Cons.IsLacalCurrencyforEntity())) Then

‘Declare Variable for Destination Buffer
Dim destinationInfo As ExpressionDestinationInfo = api.Data.GetExpressionDestinationInfo("A#DataBufferMath:UD2#None™)

‘Get Source Data Buffer for Met Sales
Dim netSales As DataBuffer = api.Data.GetDataBuffer(DataApiScriptMethodType.Calculate, "RemoveNoData(A#6@999:UD24#Top)", destinationInfo)

'Get Source Data Buffer for Operating Expenses
Dim operatingExpenses As DataBuffer = api.Data.GetDataBuffer(DataApiScriptMethodType.Calculate, "RemoveNoData(A#54500:UD24Top)", destinationInfo)

'Create New Data Buffer With the End Result of Net Sales - Operating Expenses
Dim dataBufferExample As DataBuffer = (netSales - operatingExpenses)

'set the Destination Data Buffer
api.Data.SetDataBuffer (dataBufferExample, destinationInfo)

End If

API Overview Guide 123

GetDataBuffer Functions

Example using GetDataBuffer and SetDataBuffer in Business Rule Using Sub Routine in
a working formula:

Case Is = FinanceFunctionType.Calculate

"Execute Sub Routine in the Function to Return Results
Me.CalculateBonusUsingGetDataBuffer(api)

Private Sub CalculateBonusUsingGetDataBuffer(Byval api As FinanceRulesApi)
Try
'Define Destination Data Buffer or left side of the eguation
'Will copy to A#Bonus while processing the data buffer in memory
Dim destinationInfo As ExpressionDestinationInfo = api.Data.GetExpressionDestinationInfo("™)
'Read the numbers for A#Salary into a source Data Buffer
Dim spurceDataBuffer As DataBuffer = api.Data.GetDataBuffer(DatafpiScriptMethodType.Calculate, "A#Salary”, destinationInfo)

'Check to make sure the source Data Buffer exists
If Mot sourceDataBuffer Is Mothing Then
‘Create a new data buffer for the result cells
Dim resultDataBuffer As DataBuffer = New DataBuffer()

"Loop over the source cells in the source Data Buffer
For Each sourceCell As DataBufferCell In sourceDataBuffer.DataBufferCells.Values
'Only process cells that have data and cell amount that iz greater than @
If ((Mot sourceCell.CellStatus.IshoData) And (sourceCell.CellAmount > @.8@)) Then
'Create new data buffer cells from the filtered source cells from source Data Buffer
Dim resultCell As MNew DataBufferCell(sourceCell)

'Define A#Bonus as the target account to copy to

"Multiply dsta cell amounts by 5%

'Set the manipulated data cells to the data buffer

resultCell.DataBufferCellPk.AccountId = api.Members.GetMemberId(DimType.Account.Id, "Bonus™)
resultCell.Cellfmount = sourceCell.CellAmount * B.85

resultDataBuffer.setCell(api.sI, resultCell)

End If
Next

‘save the results to the destination data buffer
api.Data.SetDataBuffer(resultDataBuffer, destinationInfo)

End If

Catch ex As Exception
Throw ErrorHandler.logWrite{api.si, New XFException(api.si, ex))
End Try
End Sub

API Overview Guide 124

Unbalanced Math Functions

Unbalanced Math Functions

Unbalanced Math Functions

Unbalanced math functions are required when performing math with two Data Buffers,
where the second Data Buffer needs to specify additional dimensionality. The term
Unbalanced is used because the script for the second Data Buffer can represent a
different set of Dimensions from the other Data Buffer in the api.Data.Calculate

text. These functions prevent data explosion. The four Unbalanced Math functions are:

+ AddUnbalanced

o Example: api.Data.Calculate("A#TargetAccount = AddUnbalanced
(A#OperatingSales, A#DriverAccount:U2#Global, U2#Global)")

» SubtractUnbalanced

o Example: api.Data.Calculate("A#TargetAccount = SubtractUnbalanced
(A#OperatingSales, A#DriverAccount:U2#Global, U2#Global)")

e MultiplyUnbalanced

o Example: api.Data.Calculate("A#TargetAccount =MultiplyUnbalanced
(A#OperatingSales, A#DriverAccount:U2#Global, U2#Global)")

+ DivideUnbalanced

o Example: api.Data.Calculate("A#TargetAccount =DivideUnbalanced
(A#OperatingSales, A#DriverAccount:U2#Global, U2#Global)")

When using Unbalanced Math functions, the first two parameters represent the first and
second Data Buffers on which to perform the function. The third parameter represents the
Members to use from the second Data Buffer when performing math with every
intersection in the first Data Buffer. The math favors the intersections in the first Data
Buffer without creating additional intersections.

Itis important that the dimensionality of the Target (left side of the equation) matches the
dimensionality of the first data buffer on the right side of the equation (argument 1).

API Overview Guide 125

Unbalanced Math Functions

Often, these functions would be used when one source data buffer is doing math with a
specific data cell intersection. This could be a rate, driver, or some data cell input.

Unbalanced Math Functions Usage

Example using MultiplyUnbalanced in a working formula:

GetDataBufferUsingFormula Function

The GetDataBufferUsingFormula function uses an entire math expression to calculate a
final data buffer. GetDataBufferUsingFormula can perform the same data buffer math as
Api.Data.Calculate, but the result is assigned to a variable, where Api.Data.Calculate
actually saves the calculated data.

GetDataBufferUsingFormula calculates multiple source data buffers first. Then, the result
of the math is stored in memory using a Formula Variable. Finally, the Formula Variable is
used anywhere within the Member Formula or Business Rule. This function is commonly
used during rule writing for Planning Business Rules using MultiplyUnbalanced,
DivideUnbalanced, Trailing functions such as trailing 12 months, and Allocations.

When using GetDataBufferUsingFormula, FilterMembers and RemoveMembers are used
in conjunction to shrink down dimensional members in the source Data Buffer.

FilterMembers

FilterMembers change a data buffer and only include numbers for the specified
Dimensions. The first parameter is the starting data buffer. This can be a variable name or
an entire math equation in parentheses. There can be as many parameters as needed to
specify Member Filters and different Member Filters can be used for multiple Dimension
types. The resulting filtered data buffer will only contain numbers that match the Members
in the filters.

API Overview Guide 126

Unbalanced Math Functions

GetDataBufferUsingFormula Usage

Example using GetDataBufferUsingFormula in a working formula:

‘Alternate way to api.Data.Calculate(A#DataBufferMathUsingFormula:UD2#None =
'GetDataBufferUsingFormula

‘Standard GetDataBufferUsingFormula formula
T ((Not api.Emtity.HasChildren()) And (api.Cons.IslocalCurrencyforEntity(})) Then

‘Get Data Buffer by using GetDataBufferUsingFormula to do the math
Dim dataBufferExample As DataBuffer =
'Set Data Buffer Variable to pass into api.Data.Calculate formula
‘Create @ unigue name to name the Data Buffer as a Formula Variable
api.Data.FormulaVariables.SetDataBuffervariable("dataBufferexample”, dataBufferfxample, False)
'Pass variable into api.Data.Calculate using a §

‘Can pass this variable to other api.Data.Calculate, GetDataBufferUsingFormula, or Sub routines

api.Data.Calculate("A#DataBufferMathUsingFormula:UD2#None = $dataBufferExample™)

End If

= A#6@999:UD2#Top - A%54500:UD2#Top™).

May have better performance impact using

api.Data.GetDataBufferUsingFormula("RemoveNoData(A%60999: UD2#Top) - RemoveNoData(A#54500:UD24Top)")
Can be used for multiple instajfes of api.Data.Calculate

Example using GetDataBufferUsingFormula with FilterMembers and MultipleUnbalanced

in a working formula:

e Data Buffer Using Formula to filter specific members

"Use
de () is the starting data buffer

1.

argunent i

*2nd argument is the filter based on the starting data buffer
*Can continue to add filters separated by a comma
Dim salesExp As DataBuffer = api.Data. ing Fi A#ALL, A#TotalExp.Base)) ")

*Set Data Buffer Varisble to pass salesExp to any other formula
api.Data. FormulaVariables . SetDataBuffervariable("salesexp”, saleséxp, False)

ultiplyUnbalanced to multiply all Expense Accounts by a specific data cell intersection and divide by 12
argument is Formule Variable multiplied by 2nd argument which is an individual data cell intersection

1.

12), E#Global: V#YTD: CHUSD Félione:0#BeToreAd]

*3rd argument is the dimensions that make it unbalanced
t: i 1#Mione 1

il Exp, (E#Global:VavT

Dim result As DataBuffer = api.D: ingy

*Set Data Buffer Variable to pass result to any other member formula
api.Data. FormulaVarisbles . SetDatabuffervariable("result”, result, True)
*Calculate using Data Buffer Varisble. Can do additional math inside api.Data.Calculate
api.Data. Calculate ("VaPeriodic = $result")

API Overview Guide

127

	Introduction
	Development Technologies
	Programming Language
	User Interface Technology
	Server Technology
	Database Technology
	OneStream API Details and Database Documentation

	Developer Fundamentals
	VB.Net and C#
	In-Solution Documentation
	Business Rules Editor Overview
	Helpful Resources

	Platform Engines
	Workflow Engine
	Stage Engine
	Finance Engine
	Data Quality Engine
	Data Management Engine
	Presentation Engine
	BRApi

	Business Rules
	Anatomy of a Business Rule
	Business Rule Definition
	Business Rule Classifications
	Event Handler Business Rules
	Complex Expressions
	Business Rule Types
	Organizing and Referencing Business Rules

	API Structure and Organization
	Namespaces
	Namespaces Defined
	Namespace Hierarchy
	Microsoft Financial Calls
	In-Solution Development
	Custom Development

	Using System Tools
	System Business Rules
	Database
	Tables
	Tools
	Data Records

	Client API Listing
	Client API Object Hierarchy
	PowerShell

	Event Listing
	Event Handler Business Rules
	Event Firing Sequences

	Introduction
	Member ID
	Api.Pov.Time.MemberId
	Api.Pov.Time.MemberId Usage

	Api.Pov.Entity.MemberId
	Api.Pov.Entity.MemberId Usage

	Api.Pov.Account.MemberId
	Api.Pov.Account.MemberId Usage

	Dimension Primary Key - DimPk
	DimPK Usage

	Dimension Type Id
	DimTypeID Usage

	Data Unit Dimension POV
	Data Unit Dimension POV Usage

	Time Functions
	Api.Time.GetYearFromId
	Api.Time.GetPeriodNumFromId
	Api.Time.GetPeriodNumFromId Usage

	Api.Time.GetNumDaysInTimePeriod
	Api.Time.GetNumDaysInTimePeriod Usage

	Api.Time.AddTimePeriods
	Api.Time.AddTimePeriods Usage

	Api.Time.AddYears
	Api.Time.AddYears Usage

	Using Member Functions for Calculations
	GetMember
	GetMember Usage

	GetMemberId
	GetMemberID Usage

	GetBaseMembers
	GetBaseMembers Usage

	Writing Stored Calculations
	Overload Function
	Api.Data.Calculate Usage

	IsDurableCalculatedData
	IsCurableCalculatedData Usage

	Eval Function
	Eval Function Usage

	Summary
	Remove Functions
	RemoveZeros
	RemoveNoData
	Remove Functions Usage

	GetDataBuffer Functions
	GetDataBuffer Function
	GetDataBuffer Usage

	Unbalanced Math Functions
	Unbalanced Math Functions
	Unbalanced Math Functions Usage
	GetDataBufferUsingFormula Function
	FilterMembers
	GetDataBufferUsingFormula Usage

